
4

A STORED PROGRAM COMPUTER FOR
SMALL SCIENTIFIC SPACECRAFT

by Rodger A, Clzff
Goddard Space FZight Center
Greenbelt, M d

f
N A T I O N A L AERONAUTICS A N D SPACE A D M I N I S T R A T I O N WASHINGTON, 0. C . OCTOBER 1966

TECH LIBRARY KAFB, NM

I111111 Hlll lllll lllll Hlll119 lllll IIII Ill
0330267

A STORED PROGRAM COMPUTER FOR

SMALL SCIENTIFIC SPACECRAFT

By Rodger A. Cliff

Goddard Space Flight Center
Greenbelt, Md.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the C l e a r i n g h o u s e for F e d e r a l S c i e n t i f i c a n d T e c h n i c a l I n f o r m a t i o n
S p r i n g f i e l d , V i r g i n i a 22151 - P r i c e $2.50

ABSTRACT

A computer design is presented for use on small sci-
entific spacecraft, such as the Anchored Interplanetary
Monitoring Platform (AIMP). To meet the requirements of
reliability, low power drain, light weight, small size, prob-
lem solving power, and flexibility; the computer has 1024
words of program memory and 512 words of data memory
(both randomly accessed). In order to protect the program,
the program memory is of the non-destructive readout type.
The data memory is of the conventional read/write variety.
Power drain and hardware are minimized by restricting the
amount of parallel gating of information, the number of reg-
isters, and the number and complexity of instructions. A
se t of arithmetic subroutines occupies nearly half of the
program memory, and was utilized in exploring the capa-
bilities of the computer.

ii

CONTENTS

Abstract .

..

ii

INTRODUCTION .
Problem Statement .
The Small Scientific Spacecraft .

PRE-DESIGN CONSIDERATIONS .
General Criteria for a Spacecraft Computer .
Obtaining Low Power Drain .
Desired Instructions .
Interface .

DESIGN OF A SPACECRAFT COMPUTER .
DataFlow .
Program Protection .
WordLength .
Instruction Coding .
Block Diagram .

PROGRAMMING THE COMPUTER .
Numbersystems .
Arithmetic Subroutines .
Programming Techniques .
Analysis of the Arithmetic Subroutine Package .
A Sample Computational Program .

CONCLUSION .
Appendix A-Mnemonic Operation Codes .

1

1

1

6

6

7

9

10

15

17

17

22

24

45

47

49

51

iii

A STORED PROGRAM COMPUTER FOR
SMALL SCIENTIFIC SPACECRAFT*

bY
Rodger A. Cliff

Goddard Space Flight Center

INTRODUCTION

Problem S t a t e m e n t

It is the aim of this r e sea rc - to design a "minimum computer." The intention is to design a
system which would be classified as a true computer by those conversant with computer technol-
ogy, but which would be far smaller and simpler than the usual spaceborne computer. Such a
minimum computer should be programmable and should be able to do both arithmetic and logical
operations.

It must be recognized that the design of a computer is as much an art as it is a science be-
cause there are so many degrees of freedom and so few constraints. The design choices made in
the course of this research reflect the author's engineering judgment, and alternate solutions are
of course possible. The choices made are not "logically derivable," and indeed if they were the
problem would not be interesting. It should be understood that the arguments explaining why cer-
tain methods were used in place of others are included in an attempt to exhibit the author's ration-
ale rather than to prove that a computer for this application must be built as described.

When it has been demonstrated that an extremely small computer can be built, and that it is
at least marginally useful, then the design can be expanded upon by others to suit specific situa-
tions. The aim is to open up a whole spectrum of possible computer applications which are inac-
cessible to presently available larger machines because of restrictions on power supply, weight,
and size. It is expected that the results of this research will benefit fields other than space-
craft instrumentation.

The Small Scient i f ic S p a c e c r a f t

The majority of scientific spacecraft are small, overall dimensions being of the order of 2 to
3 feet. Their attitude is stabilized by spinning them about the axis of highest moment of inertia.

'Thesis submitted to the Faculty of the Graduate School of the University of Maryland in partial fulfillment of the requirements for the
degree of Master of Science, 1966.

1

Many of the sensors in the experiments a r e directional. Therefore, the spinning motion of the
spacecraft causes these sensors to perform a circular scan of the sky, which in itself is desirable.
However, the scanning motion does pose a problem: the experimental data is most meaningful
when collected in synchronism with the spacecraft spin, whereas the time-division- multiplex te-
lemetry system commutates experiments at a fixed rate which is not related to the spacecraft spin
rate. Therefore, buffer memory must be provided. A second problem is that data from experi-
ments a r e typically highly redundant. Data transmission capability of the telemetry link is limited;
therefore it is desirable to compress redundant data before transmission. Hard-wired special-
purpose data handling devices presently serve the functions of buffer memory and data compressor
on small scientific spacecraft. However, the sor t of simple computer which is the object of this
research should be able to replace some of the special-purpose devices and provide an additional
advantage: the flexibility which results from using a stored program.

In order to more clearly show the constraints imposed, some characteristics of a typical
small scientific spacecraft will be given. The AIMP (Anchored Interplanetary Monitoring Platform)
weighs about 120 pounds, of which 20 pounds is the range and range-rate transponder, telemetry
and data system, and programmers. The power system weighs 50 pounds or close to one-half of
the total. Of the approximately 50 watts of power produced, 20 watts a r e taken by the range
and range-rate transponder, telemetry and data system, and programmers. The transmitter alone
uses 16 of these 20 watts, o r more than 30 percent of the entire spacecraft load.*

If a computer can compress the experimental data enough to make it possible to reduce the
transmitter power by more than the computer power drain, then a net power saving can be gained
by using a computer. When deciding whether or not one can save power by using a computer one
must also take into account the power which would have been used by buffer memories and hard-
wired special-purpose data compressors. Even if a net power gain cannot be obtained by using a
computer, the flexibility provided by stored programs may still make it desirable to use computers
in small Spacecraft.

PRE-DESIGN CONSIDERATIONS

General Cr i te r ia f o r a S p a c e c r a f t Computer

Before the design of the computer can be undertaken i t is necessary to establish guidelines
and criteria. Listed below, in order of importance, are six desirable qualities for a spacecraft
computer, followed by an explanation of each. The first four a r e the most important; for i f they
a r e not met, the system cannot be included in a small spacecraft.

1. Reliability
2. Low Power Drain
3. Light Weight

4. Small Size
5. Problem Solving Power
6. Flexibility

*J. J . Madden, "AIMP Summary Description," NASA Goddard Space Flight Center Document X-672-65-313, August 1965.

2

Retiability

Reliability must be of primary importance for space-borne equipment. Placing a spacecraft
in its assigned trajectory is an expensive process; therefore, it is imperative that it perform its
appointed task for the prescribed length of time without failure. Preventive o r corrective main-
tenance is not possible in the small unmanned vehicles we are considering.

Low Power m a i n

Low power drain is necessary because spacecraft power supplies consist of batteries and
solar cell a r rays both of which are heavy. Unfortunately, the cost of a launch vehicle increases
steeply with increasing payload weight. High power dissipation can also present a temperature
control problem on spacecraft, because ultimately all excess heat generated must be dissipated
by radiation.

Light Weight

Light weight (of the computer itself) is less important than power drain because when micro-
electronics and modern spacecraft packaging techniques are used, a computer will have a high
power dissipation to weight ratio. To reduce overall spacecraft weight it is more important to
reduce the computer's power drain than its weight.

Small Size

Small spacecraft require small-size subsystems, but this is not as critical as weight. Avail-
able packaging techniques a r e quite good, and spacecraft usually have some empty space anyway.
However, size is important enough to warrant the use of microelectronics and the best packaging
available.

Problem Solving Power and Flexibility

Given that a computer meets the above criteria and is therefore capable of being put aboard
a small spacecraft, one may worry about characteristics which affect its usefulness. Two such
characteristics are problem solving power and flexibility, which are highly interrelated. If a de-
cision must be made between them, however, problem solving power is most important because
spacecraft are hand-built one at a time and sub-systems may be modified o r redesigned for each
flight if necessary. Caution must be exercised because many of the advantages of a computer are
fully realized only if a system, sufficiently flexible to require little modification, is created.

Research Emphasis

Light weight and small size is a packaging problem, rather than electronic one; therefore,
these criteria will not be explicitly involved in the computer design. The computer wil l , of course,

3

be small and simple in order to meet the lower power requirement. The characteristics of Texas
Instruments Series 51 integrated circuits a r e typical of circuits that might be used to construct
the computer. Therefore, these characteristics will be kept in mind during the design process.
Reliability can be enhanced by incorporating hardware redundancy into the design. Deciding the
manner in which this redundancy should be applied is in itself a difficult problem. Therefore re-
liability will not be specifically emphasized in the research. If an opportunity to improve relia-
bility presents itself, advantage will be taken of it. Otherwise, it will be the aim to design as
simple a machine with as few components as possible. The remaining criteria, to which the most
emphasis will be given, a r e low power drain, problem solving power, and flexibility.

Obtaining l o w Power Drain

The first step in obtaining low power drain is to organize the computer in such a way that the
number of logic gates is minimized. As a start, it is possible to eliminate the many handy but
nonessential features of the ordinary computer. Indirect addressing, address modification by in-
dex registers, floating point hardware, special table look-up instructions, etc., can be eliminated
if necessary. This simplifies instruction decoding and control logic. Programs must be longer
and more complex if these features a re not included. It is hoped that this will not be a serious
handicap in the case at hand because the data rate both into and out of the computer will be low
compared to those usually encountered in the computer field. Furthermore, difficulty of program-
ming is not a serious drawback for a spacecraft computer because it will be programmed infre-
quently and by competent programmers. Under the conditions for which the spacecraft computer
is being designed, it is acceptable if involved programs, which a r e difficult to write, must be used
in order to minimize the amount of computer hardware.

To reduce the number of logic gates still further, arithmetic and logical operations should be
done serially rather than in parallel. An N-bit serial adder, for instance, requires fewer gates
than an N-bit parallel adder. Similarly, all data switching and transferring and all input and out-
put should be done serially. Otherwise, additional power is required for each possible position to
which data may be switched. Another way to reduce the number of logic gates is to minimize the
number of registers. Reducing the word length shortens each register and eliminates more gates.

Desired Instructions

Before beginning the computer design, an enumeration should be made of the operations it is
expected to perform. These operations may be grouped in several classes: arithmetic, logical,
data transfer, and control.

Of the possible arithmetic instructions, fixed-point add and substract a re easiest to implement
in hardware. The other desirable operations (fixed-point multiplication and division, and floating-
point addition, subtraction, multiplication and division) can be programmed using the fixed-point
add and subtract instructions. This approach is in accord with the desire to hold the amount of
hardware to a minimum even at the expense'of increased program length and complexity.

4

The three logical instructions OR, AND, and COMPLEMENT are so useful and so easy to im-
plement that they will probably all be included in the computer's instruction set. The Exclusive
Or function is also readily available from the adder by constraining the carry to be zero. Of
course i f an absolute minimum computer is to be built, only one logical instruction is necessary;
either NOR or NAND will suffice.

Quite a number of data transfer instructions a r e desirable. Two very important instructions
are: LOAD, to read data from the memory; and STORE, to write data into the memory. Another
necessary pair of instructions are INPUT and OUTPUT. They are used for communicating with
the computer's environment. Data transfer between the various registers also must be provided.
Finally, instructions must be provided to shift or rotate data within one register without affecting
the other registers.

Control instructions a r e also necessary. Either conditional transfers or conditional skips are
required. Sense instructions to produce program branching under external control a r e a useful
type of conditional instruction. If conditional skips a r e used, unconditional transfers should also
be included to assist in control of branching.

In the course of designing the computer and experimenting with programs other instructions
may be found to be desirable. It is also possible that the hardware configuration produced will
suggest that certain useful instructions could be included with a minimum of additional complexity.
If so, these additional instructions will be appended to the computer's instruction set. In any case,
the instructions enumerated in this section form a point of departure from which the computer de-
sign may be undertaken.

Interface

Interface with Spacecraft

Simplicity of the computer's interface with the spacecraft is desirable for two reasons. First,
a simple interface minimizes the number of wires between the computer and the rest of the space-
craft. This increases reliability and decreases weight by eliminating as many unreliable, bulky
interconnections as possible. Second, a conceptually simple interface (one with a minimum num-
ber of interactions between the computer and the spacecraft) facilitates computer and spacecraft
testing. A simple interface also makes it easy to use the computer in a number of different ap-
plications without extensive modification. Since the internal organization of the computer is serial,
and because one wire is simpler than many, data will enter and leave the computer in serial. To
prevent timing difficulties, the computer will supply the spacecraft with strobe pulses for both in-
put and output. Telemetry system and experiment status can be communicated to the computer
through a small number of sense lines. A trapping feature may prove useful also. This will be
determined when experimenting with programs.

Interface with Memory System

It is expected that the development of a low-power, flight-worthy memory will be undertaken
as a separate project. Therefore, a well defined interface must exist between the memory and the

5

computer. Since it takes almost the same amount of energy to read or write one bit of a memory
as it does to read or write an entire word, the memory access should be parallel rather than
serial. To obtain the desired stored-program flexibility, the memory must be randomly accessed.
Therefore, either parallel address information must be supplied to the memory or it must contain
an address register which would duplicate registers already in the computer. Parallel addressing
will be employed to prevent this unnecessary complexity and additional power drain. To complete
the interface, control and timing signals are required. The simplest method has the computer
supply the memory with either a READ or a WlUTE pulse. Then the memory feeds the computer
a MEMORY BUSY signal until it has finished cycling.

Now there are two basically different functions that the memory must perform. It must store
data, which will repeatedly be modified, and it must also store the program. Somehow the pro-
gram must be protected. Somewhere in the machine the program must be stored in a form which
can be accessed non-destructively. There should be no possibility that a temporary malfunction
could scramble the program. Possible configurations are: (1) a main memory, some locations
of which are non-destructive; (2) a main destructive-type memory and an auxiliary non-destructive
program store with which to refresh the main memory; and (3) two separate memories, a destruc-
tive one for data and a non-destructive one for program. If a non-destructive read-only memory
is used, special provision must be made for instruction modification.

To complete the interface description; exact timing, voltage levels, etc. must still be specified.
However, the interface just described is sufficient and work could begin on the computer, the mem-
ory system, and the spacecraft.

DESIGN OF A SPACECRAFT COMPUTER

Data Flow

The computer will perform operations rially for reasons previously discussed. Access to
the memory will be parallel, however, because it takes little more energy to read a word out of
a typical memory than it does to read out a single bit. The typical memory elements produce a
pulse output. For this reason an instruction register must be provided to hold instructions while
they are being decoded and executed. Furthermore, since the operations such as addition require
two operands which must be available throughout execution, two more registers need to be pro-
vided. Therefore at least three registers of one word each must be provided in the computer. A
memory and three registers will be used as a point of departure for beginning the computer design.

Data flow paths for the computer a r e indicated in Figure 1. The path which requires least
discussion is the one from the Memory to the Instruction Register. This path is clearly neces-
sary to the operation of the computer. Paths are shown between Data Register 1 and Data Regis-
ter 2 to permit operands to be shuffled back and forth between them as required. Two more ob-
viously necessary paths are the ones from the two data registers to the Arithmetic and Logic
Unit.

6

A decision must be made as to which reg- INPUT DATA

ister should receive the output of the Arithmetic

and possible Logic paths, Unit. and To thus minimize to minimize the the number switch- of lNSTRUCT1oN L- I REGISTER 2
ing hardware required, only one path should be
provided for this output. Similarly, only one
path should be provided from the Memory to
the data registers.

REGISTER 1

OUTPUT ’ DATA

Assuming that the Memory feeds operands
to Data Register 1, as shown in Figure 1, the

be connected to Data Register 2. This connec-
output of the Arithmetic and Logic Unit should MEMORY ~

tion will save many instructions in programs
which, for example, add a series of numbers
together. If results were left in Data Register

Figure 1-Data flow paths.

1 instead, then they would have to be moved to Data Register 2 before each additional operand was
read out of the memory. Furthermore, because results a r e found in Data Register 2 at the end of
an operation, it is natural that the path from the data registers to the Memory be provided from
Data Register 2. Otherwise the results would first have to be transferred from Data Register 2
to Data Register 1 before they could be stored.

The next items to be considered are the input data and output data. Input data should go to
Data Register 2 because from there it may either be directly stored, or another operand can be
read out of Memory into Data Register 1, and computation can be done on the input data. Output
data is taken from Data Register 1 because it is expected that the computer will be serving a buf-
fering function and that output data will be stored in the Memory until it is called for.

All of the paths shown in Figure 1, except two, are essential to the operation of the computer.
The paths between the two data registers could be eliminated because there are parallel paths,
either through the Arithmetic and Logic Unit o r through the Memory. However, the utility of these
two paths, which will become apparent when programming is discussed, and their ease of imple-
mentation make it advantageous that they be retained.

Program Protect ion

In order to have high reliability it is essential to protect a spacecraft computer program from
transient malfunctions. The use of the two separate memories (one for program and one for data)
seems to be the most promising approach because it provides additional advantages.

Figure 2 shows the memory system of a conventional computer. It stores both instructions
and data. When the computer requires data the Address Switch connects the Memory address in-
puts to the Instruction Register and the Data Switch connects the Memory data output to the Data
Register. On the other hand, when it is time to fetch the next instruction, the Address Switch

7

ADDRESS FROM INSTRUCTION TO DATA TO
INSTRUCTION INSTRUCT ION DATA

REGISTER REGISTER REGISTER

ADD~ESS ~ R O M
LOCATION COUNTER

Figure 2-Conventiona I computer.

ADDRESS FROM INSTRUCTION TO
LOCATION INSTRUCTION REGISTER
COUNTER

I 4 4

PROGRAM
MEMORY

(READ ONLY)

v

ADDRESS FROM
INSTRUCTION

REGISTER
DATA TO

DATA REGISTER

DATA MEMORY
(READ/WRITE)

P
I

Figure 3-Spa cecraft computer.

selects the Instruction Location Counter as the
address source and the Data Switch sends the
Memory output to the Instruction Register. In-
ternal to the Memory there is no distinction be-
tween data and instructions and they are treated
alike. This configuration has the advantage that
only one memory system with all its associated
electronics is required. Furthermore, it is not
necessary when designing the computer to know
how much of the memory capacity will be used
for instructions and how much for data.

When two separate memories a r e used, as
shown in Figure 3, both the Address Switch and
the Data Switch a r e eliminated. This eliminates
a large amount of parallel information switching
and thereby saves much power.

Two memory systems require more com-
ponents than one system of equivalent capacity;
however, it was decided to pay that price to
obtain protection for the program. A power
saving is actually anticipated from the use of
two separate memories, because spacecraft
memories a r e designed to draw power only when
they are reading or writing. In the first analysis,
the number of memories does not affect the
power drain since the number of accesses is not
changed. In fact, a "read only'' memory tends
to require less power than a "read/write" mem-
ory, and over half of all memory accesses will
be for instructions. Therefore, two separate
memories will use less power than a combined
memory in this application.

Comparison of Figure 4 with Figure 1 shows
the changes resulting from the decision to use
separate Program and Data memories. Notice
that there a r e now a pair of data paths between
the Instruction Register and Data Register 2.
These paths allow the computer to operate on

instructions as data when this is desirable. Although this ability is infrequently used in conven-
tional computers, it is necessary for this computer because of the absence of address modifica-
tion by index registers. To return from a subroutine, for instance, the program appends the return

8

address (which has been stored in the Data
Memory) to a transfer instruction. The result-
ing transfer instruction is then transmitted from
Data Register 2 to the Instruction Register and
executed. A more detailed discussion of subrou-
tine linkage will be found in the next section.

Constants, as well as instructions, are
stored in the Program Memory. All contents of
the Data Memory must be considered volatile
and subject to destruction at any moment. When
a constant value, like +1, is required by a pro-
gram it is first loaded into the Instruction Reg-
ister from the Program Memory and then trans-
ferred to Data Register 2. Data Register 2 is

I N S T R U C T I O N DATA
REGISTER + REGISTER 2

P R O G R A M

M E M O R Y

(READ ONLY)

REGISTER 1

Figure 4-Data f low paths for computer
wi th two memories.

chosen to communicate with the Instruction Register because this minimizes the number of instruc-
tions required both for instruction modification and introduction of constants.

One further feature is required if the programmed operation of the computer is to be effec-
tively protected. Because subroutine return addresses are stored in the Data Memory during sub-
routine execution they may be accidentally damaged. Then, when the subroutine attempts to return,
it will transfer to the wrong location, which might even contain a constant instead of an instruc-
tion. Another possibility is that the Instruction Location Counter could be disturbed by some
transient phenomenon, producing similar results. In either case, the odds are that eventually the
computer would settle down and resume following the program in a sensible fashion.
ever, there is no assurance of this. It is also possible that some unusual data could find an un-
discovered program "bug" and cause the computer to "hang up."

How-

To prevent these catastrophes, a trapping provision is included, whereby an external signal
forces the instruction location counter to zero. Then, beginning at location zero the computer exe-
cutes a program designed to put everything in its "ground state" and goes on its way as though the
malfunction had not occurred. It is desirable that these trapping signals be supplied to the com-
puter periodically from an external clock so that the computer cannot generate nonsensical data
for too long a time before it is reset.

Word length

The word length of the computer should be as short as possible to minimize hardware com-
plexity and power dissipation. However, the word length must be long enough to accommodate
memory addresses. Now certainly 500 to 1000 memory locations should be provided as a bare
minimum. This requires 9 or 10 bits for addresses, unless the memory is arranged in sectors
which are selected by additional instructions.

Another approach is to require two words for each instruction, or at least for certain classes
of instructions. This complicates instruction decoding and lengthens programs. It also increases
the number of memory accesses and thereby increases power drain. Therefore, as a minimum,

9

the word length should be, for instance, 10 bits plus a few bits for operation code. Likely candi-
dates a re in the 12 to 16 bit class.

Spacecraft telemetry systems usually transmit data in 3 o r 4 bit bytes. For this reason it is
desirable that the word length be a multiple of 3 or 4. Otherwise there will be difficulties in pack-
ing and unpacking data. Any word longer than 9 or 10 bits is probably sufficient for the data usually
encountered. Reasonable choices, therefore, a r e 12, 15, o r 16 bits. Because it is the object of this
research to design as small a computer as practicable, 12 bits has been chosen as the word length.
The length 12 also has the desirable property of being divisible by 1,2,3,4, and 6. Considerable
squeezing is required to fit all the necessary instructions into a 12-bit format, but this has been
accomplished.

One possibility, which was discarded earlier is to choose two word lengths, one for instruc-
tions and one for data. Then only the Instruction Register need be lengthened to provide more ad-
dress bits. Unfortunately, to do this complicates instruction modification and storage of con-
stants. There is another reason why all the words should be of the same length. If they are, then
all the registers can be identical modules.

Instruction Coding
The objective, in designing the instruction coding scheme, is to make decoding as simple as

possible and still get all the required instructions into a 12-bit format. The decoding tree in Fig-
ure 5 shows how this is done.

1

ARITHMETIC 1 AND TEST I
@ . ,

SHIFT AND 1/0 I (10 - BIT ADDRESS) I I (9 - BIT ADDRESS) I

---I

I
I
I
I

-1

I
._____ & ------ ~

I , SPARE I INSTRUCTION
I I REGISTER
L ___________ J I I

Figure 5-Decoding tree.

10

Trans fer

The first instruction which must be accommodated is the unconditional transfer instruction.
It is the only addressed instruction which refers to the program memory. This instruction takes
the form

00 XXXXXMLXXX,

where 00 is the operation code and X. . .X is a 10-bit address. There is capability, therefore, for
a program memory of 1024 words.

Load and Store

The next instructions to be considered are those to read and write the data memory. They
are called LOAD and STORE and take the form

01 Y XXXXXXXXX,

where 01 determines that the instruction is of the data memory class, Y is the operation code
(Y = 1 means LOAD and Y = 0 means STORE), and X. . .X is a 9-bit address. This allows 512

words of data memory.

Arithmetic and Test

Moving now to the right hand side of Figure 5, and starting down the tree, we find arithmetic
and test instructions

10 YYY TTT C C C C .

The arithmetic and logic operations which have been chosen are listed in Table 1. 'lNo Operation"
is included so that the tests, which are explained in a subsequent paragraph, can be made without
disturbing the contents of Data Register 1 and Data Register 2.

"Add" is self explanatory. It would not have been necessary to include "Subtract" but it is very
easy to implement when one already has a serial adder. Subtraction is accomplished by taking
the two's complement of the contents of Data
Register 1 and adding it to the contents of Data
Register 2. The two's complement is formed
by the familiar procedure of inverting each bit
and then adding 1. Inversion of the bits is ac-
complished by taking the output of Data Register
1 from the "false" side instead of from the
"true" side which is normal. Adding 1 is ac-
complished by setting the carry flip-flop to 1
before beginning the operation. Additional dis-
cussion of two's complement arithmetic, includ-
ing the reasons for choosing it, can be found in
the next section.

.-

YYY

000
001
010
011
100
101
110
111

Table 1

Arithmetic and Logic Operations.

Operation

No Operation
Add
Subtract
Or
And
Complement
Exclusive Or
Zero

Mnemonic

NOP (or blank)
ADD
SUB
OR

COMP
EOR
ZERO

AND

11

1
101

111

Table 2

Tests and Test Codes.

Test

None
Carry Flip-Flop 0
Data Register 2 0

Interrupt Line 1 off
Interrupt Line 2 Off
Interrupt Line 3 Off
Interrupt Line 4 off

Data Register 2, Bit 1 0

Mnemonic

blank
C
Z
B1
I1
I2
I3
I4

lrOr,lt "And," and "Exclusive Or" perform
the specified operation on a bit-by-bit basis
using the contents of Data Registers 1 and 2.
"Complement" operates successively, bit- by-
bit, on the contents of Data Register 2 and
"Zero" shifts zeroes into the left hand end of
Data Register 2.

The next field of the arithmetic and test in-
struction specifies the test to be performed at
the end of the specified operation. Test codes
and their corresponding tests a r e listed in
Table 2. If no test is specified, or if a test is

specified but not satisfied, the operation proceeds to the next sequential instruction. If, however,
a specified test is satisfied the computer skips the next sequential instruction and proceeds from
there. This sor t of conditional branch is easy to implement by merely sending an extra pulse to
the instruction location counter whenever a test is satisfied.

The test of the carry flip-flop is used for sensing overflow. The test of Data Register 2, bit
1, senses the sign of a number. The zero test needs no explanation. The last four tests sense ex-
ternal conditions and a r e used for synchronizing the computer with external devices, such as a
spacecraft telemetry system.

The last field of this type of instruction, CCCC, specifies the number of bits to be operated on.
Normally, a count of 12 will be used in order to operate on a whole word. However, many examples
will be found in the programs contained in the next section where it was advantageous to use a
count other than 12. Any count from 0 to 15 may be specified. For counts less than 12, some high-
order bits will not be operated upon and for counts greater than 12, some low-order bits will be
operated upon twice. During Arithmetic and Test operations the output of Data Register 1 is con-
nected back to its input so that the contents a re rotated but otherwise not disturbed.

Shift md I/O

Proceeding further down the decoding tree again, the next class of instructions to be en-
countered is the "Shift and I/O" category. They contain

111 AA BB Z CCCC.

The bits in fields AA and BB control the setting of the switches at the inputs to the data registers
(Figure 6). The possible combinations a r e shown in Table 3. The "Off' setting allows either
register to be shifted without affecting the other register. This is particularly useful. Examples
of uses forvarious combinations of these settings can be found in the following section.

The spare input to Switch 1 could serve any of a number of uses. It can be used as a
second data input channel, as a source of 1's or O's, or it could be connected to a tap on

12

some intermediate stage in either Data Register
1 or 2. No particular use will be specified at
this time.

STROBE INPUT DATA

The Z field controls the output function.
Data is always present on the output line, as
shown in Figure 6, but no output data strobe
pulses occur except when a "Shift and I/OI1 in-
struction, which has 1 in the Z field, is execu-
ted (Table 4). This class of instruction can do Figure 6-Data switches.

I SW1 Setting

Table 3

Mnemonic AA

00
01
10
11

BB

00
01
10
11

output I z I the field CCCC. Again any count from 0 to 15 Mnemonic

Off (no shift pulses to Data Register 1)
Data Register 1 output
Data Register 2 output
Spare

SW2 Setting'

Off (no shift pulses to Data Register 2)
Data Register 2 output
Data Register 1 output
Input (pulse Input Data Strobe line)

OFF (or blank)
DR1
DR2
-

Mnemonic

OFF (or blank)
DR2
DR1
IN

Room has been provided in the decoding tree for index register instructions. Figure 7 shows
a way of reducing the hardware associated with an index register. Instead of adding the contents
of the index register to the address, (which is out of the question because it would require an adder)
the two are Or'ed together. This is not as general, but it can be done with simple diode gates
which use few components and no power. The index register and the And gates will require power,
however. Assuming a dissipation of 3 mw per flip-flop or gate and a 6-bit index register for each
memory, then over 70 mw would be added to the computer's power drain, exclusive of the extra
decoding hardware. Unfortunately no bits a re available for tags in the addressed instructions, so
a "tag next memory access" instruction would be required. It is concluded, therefore, that unless

13

p)+q GATES

Figure 7-Index register.

Table 5

Operations for Bit N.

Table 6

Operations for Bit X.

Operation

Pulse specified combination of lines

-.

and halt

Mnemonic

DXZ
TAG

Mnemonic

PUH

.___ . ..

Pulse specified combination of lines
- .- and go on

a special need for some particular application
presents itself the index register feature, and
its associated decoding, will not be implemented.

The codes reserved for index registers a r e

1101 M 1 XXXXXX,

and 1101 M 0 N 00000.

The bit M specifies which memory is involved.
If the 6th bit is a 1, the next 6 bits, X. . .X, a r e
set into the specified index register. If the 6th
bit is a 0, then bit N specifies one of the two
operations shown in Table 5. The field 00000
has no effect and may contain any combination
of bits.

Pulse

It is anticipated that the computer will be
operated in conjunction with other devices. To
aid in synchronization, a class of pulse instruc-
tions is included,

11000 X BBBBBB.

The field BBBBBB specifies what combination
of 6 output lines will be pulsed. The bit X de-
termines whether o r not the computer halts
(Table 6). When the computer halts, its power
is shut off and the computer lies dormant until
the start line is pulsed from an external source.
Then it proceeds to the next instruction.

Instruction Register

There a r e two very valuable instructions which affect the contents of the instruction register.
When either of these is decoded, a latch is set so that the operation can continue while the contents
of the instruction register change. These instructions have the form

110011 xx 0000.
The field XX controls the operation and the field 0000 cam be any combination of bits (Table 7).

Spare

The class of instructions beginning with the bits 110010 is a spare class. If the computer at-
tempts to execute an instruction of this class, the result is a "pause." No further operation is

14

performed until the start line is pulsed from an
external source. The power is left on and the
contentsof the data registers a r e not disturbed.

Operation

Read next instruction into In-
struction Register and then
shift it into Data Register 2.
Next instruction to be exe-
cuted is the one following the
one shifted into Data Regis-
ter 2.

Shift contents of Data Register
2 into Instruction Register
and execute.

An Alternative

Mnemonic

I"

MIX

Programming experience shows that the
number of instruction locations required, at
least for certain types of programs, is much
greater than the number of data locations re-
quired. For instance, the arithmetic sub-
routines described in the next section require
427 instruction locations and 10 data locations.
If it becomes necessary, the instruction mem-
ory size can be doubled from 1024 words to

xx
01

~

10

Table 7

2048 words without resorting to a sectoring scheme. To do this, the load and store instructions
a r e moved to the location in the decoding tree presently reserved for index instructions. Then the
transfer instruction would have the form 0 XXXXXXXXXXX, with 11 bits for address. The LOAD
and STORE instructions would be

1101 Y XxXxxxX.

There are 7 address bits, therefore, 128 data memory locations would be possible. The resulting
ratio of instruction memory size to data memory size (about 40 to 1) closely matches the require-
ments of the arithmetic subroutines.

Summary of Operation Codes

Appendix A contains a list which summarizes the operations available in the computer in its
most likely form. Those operations which a r e optional have been marked by an asterisk in this
list. If an absolute-minimum machine is to be constructed, the optional instructions may be de-
leted. However, deletion of these instructions will significantly increase program length and
complexity. It'is the author's opinion that the complete instruction set as listed represents a
reasonable compromise between excessive sophistication and extreme simplicity of the computer
hardware.

Block Diagram
Now that the operation codes have been determined, and the functions they a r e to cause the

computer to perform have been defined, the remainder of the design process is quite straightfor-
ward. For this reason the intimate details of a complete logic diagram will not be discussed. The
novelty of this computer lies in the design features which were covered in the first four subsections.
However, an explanation of an overall block diagram, which is founct in Figure 8, is in order. Most
of the parts of this diagram have been shown in previous figures but it is beneficial to consider how
they f i t together.

15

b

L r

START

TRAP

INTERRUPT
(4 LINES) '

Inthe upper left hand corner of Figure 8 there is abox called Decoder and Sequencer. Its function
is to decode the instruction residing in the Instruction Register and to then send appropriate con-
trol signals to each of the other boxes in the diagram. In order to avoid undue congestion in the
drawing, these control lines are not shown; however, a listing of them is contained in Table 8.

INPUT

sw - DATA
2 ' REGISTER 2

-_

OUTF'UTf

STROBES AND
SEQUENCER

Table 8

A

I INSTRUCTION
REGISTER

A A 9

Control Signals.

Control Signals Required
But Not Shown in Diagram Block

-
ARITHMETIC

LOGIC
UNIT

11 AND

Instruction Register
Data Register 2
Data Register 1
Program Memory
Data Memory
Output Pulse Gates
Shift Counter Gates
Location Counter Gates
Shift Counter
Location Counter
sw2
sw1
Arithmetic and Logic Unit

- - - B
A

PULSE
$ '

0

Shift Pulses
Shift Pulses
Shift Pulses
Read Pulse
Read Pulse, Write Pulse
Output Pulse
Set Pulse
Transfer Pulse
Shift Pulses
Advance Pulse, Zero Pulse
Select Input
Select Input
Select Operation, Shift Pulses

DATA --* sw
1 ' REGISTER 1 -
4 A -

The Instruction Register, Data Reg-
ister 2, and Data Register 1 are identi-
cal 12-bit shift registers. As shown in
the diagram, they shift from left to right.
Serial input is shown at the left end and
serial output at the right end. Data Reg-
ister 1 requires parallel inputs and Data
Register 2 requires parallel outputs.
The Instruction Register requires both.
These registers shift on the receipt of
shift pulses from the Decoder and
Sequencer.

PARALLEL
PULSE DATA

12 BITS

The method of transferring data in
parallel from one of the memories into
one of these registers is of interest.
When a memory has been accessed, it

PARALLEL
PULSE DATA
12 BITS -

16

0 PROGRAM
4 MEMORY

(READ ONLY) (READ/WRITE)
-

2 4 e 52 e- m
v1 $5

"Z

first puts out a clear pulse which zeroes the register. Then the memory puts out a pulse on each
bit line which is to transmit a 1, after which it turns itself off and remains dormant until accessed
again. In this way there are no gates required and a considerable power saving and a reduction of
complexity a r e achieved. No gating is required between Data Register 2 and the Data Memory
either, because the memory samples its input data only when commanded to write. In fact, all
necessity for parallel gating anywhere in the computer has been eliminated except for loading the
Location Counter, loading the Shift Counter, and gating the Output Pulses.

At the beginning of each instruction which requires shifting, the Decoder and Sequencer opens
the Shift Counter Gates and the Shift Counter is loaded from the count field in the Instruction Reg-
ister. Thentheshift Counter counts down to zero. When it reaches zero, the Decoder and se-
quencer terminates that operation and again accesses the Program Memory for the next instruction.

The Location Counter is incremented each time the memory is accessed. In this way the in-
structions are executed in sequence. If a successful test instruction is executed, an extra pulse is
added to the Location Counter and one instruction is skipped. To execute a transfer, the Decoder
and Sequencer opens the Location Counter Gates and the Location Counter is loaded with address
bits from the Instruction Register. When the Decoder and Sequencer receives an external TRAP
command, it zeroes the Location Counter and the next instruction will be taken from location 0.

The Arithmetic and Logic Unit is quite simple. Its main constituent, is a serial adder which
is composed of one f u l l adder and a carry flip-flop. Subtraction is accomplished by using the ad-
der, as was previously explained. The Exclusive Or function is obtained from the adder by con-
straining the carry flip-flop to be in the zero state. The other functions, And, Or, and Complement
a re extremely easy to generate.

This completes the consideration of computer design. The remainder of the research is de-
voted to finding out how well this particular computer would be able to perform certain useful
tasks on-board a spacecraft.

PROGRAMMING THE COMPUTER

Number Systems

Numerical Data

There a re several ways that numerical data may be coded in an electronic system. Dig-
ital computers are restricted to binary coding by the available technology. There are, however,
a number of possibilities within the binary regime. Figure 9 shows some of the choices which may
be made. The unshaded boxes denote primary choices. It is expected that both fixed-point and
floating-point formats will find use in this machine. Fixed-point will be used where speed is im-
portant and when there is little room in the memory for arithmetic subroutines. Floating-point
operations will be slow and the programs will require a large amount of space, but they will find
use where these factors a re not of primary importance. Floating-point has the advantage of

17

FLOATIN? -POINT FIXED~POINT -
I 1

FRACTION CHARACTERISTIC

Figure 9-Numerical data.

accommodating wide dynamic range. Also,
the programmer need not worry about
keeping track of the location of the binary
point.

Fixed- Point

Fixed-point coding will be considered
first because it is simplest and because a
floating-point number is composed of two
fixed-point numbers. There a r e four
fixed-point binary number systems which
a r e commonly used in computers; they
are "magnitude," "sign-and- magnitude,"

v%wofs-complement," and "one's-complement." These systems can be used to express integers,
pure fractions, and mixed numbers depending on the location of the binary point. A s an example,
Table 9 gives all the possible 3-bit words and their interpretation as integers and fractions in the
various systems.

Binary
Code

111
110
101
100
011
0 10
001
000
111
110
101
100

Mag.
Sign
and

Mag.

+3
+2
+1
+O
-5
-2
-1
-0

Integers

TWO'S
Comp.

+3 ,

+1 L '

+o 2- ::

-2
-3.
-0

+ 2 ~ 1 L

-3 ,,:-

Table 9

Number Systems.

Fractions

One's
Comp.

+3 .p I::
+2 I

+o i 'I

+1 17-
-0
-1
-2
-3

Sign
and

Mag.

+3/4
+1/2
+1/4
+O
-3/4
-l/2
-1/4
-0

TWO'S
Comp .

+3/4
+1/2
+1/4
+O
-1/4
-1/2
-3/4
-0

One's
Comp .

+3/4
+1/2
+1/4
+O
-0
-1/4
-1/2
-3/4

If the binary point is understood to be at the extreme right-hand end of the word, one obtains
the integers listed in the first four columns of Table 9. The magnitude system is simplest, but it
will not handle negative numbers. The other three systems use the left-most bit for a sign so that
both positive and negative numbers may be represented. The remaining bits express the size of
the number. At the other extreme, the binary point may be assumed to be at the left-hand end of
the word (but not left of the sign bit). Then the binary words of Table 9 represent binary fractions,

18

which are listed in the rightmost four columns. To express a mixed number the binary point is
placed in between the above extremes. In any case, the binary point is located at the discretion of
the programmer since it does not affect the way the computer must operate. However, the design
of the computer does determine which of the four number systems can be used efficiently.

It was stated in the previous section that subtraction was accomplished in the hardware of the
computer by using the two's-complement. The two's-complement system is used because it is
best suited to addition and subtraction in a serial machine. This is determined by examining the
four systems and evaluating their performance.

Figure 10 outlines the logic required for addition in each of the systems. The magnitude and
two's- complement systems use the same hardware and are therefore compatible. The magnitude
system has two advantages; it provides the possibility of overflow detection, and it will accommo-
date numbers twice as large as the other systems for the same number of bits in a word. The
great disadvantage of the magnitude system is that it will not handle negative numbers. Overflow
is detected in the magnitude system by testing the carry flip-flop after an addition; if it is on,
there was an overflow. This test is not meaningful when two's-complement numbers are used be-
cause the carry flip-flop is left on after an addition if the sum of two negative numbers does not
overflow or i f a positive and negative number produces a positive result.

One's-complement addition is accomplished by using the same hardware which would be used
for magnitude o r two's-complement addition, except for one important modification; if the carry

F igure 1 0-F ixed-poin t addition.

19

flip-flop is on after the addition, 1 is added to the result. It is easy to see that it is necessary to
do this by looking at the examples in Table 9. Herein lies the disadvantage of one's-complement.
To add 1 after the completion of the usual addition doubles the time required for the operation.
In a serial machine the add time is large anyhow, and,this additional increase is definitely un-
desirable. Furthermore, if one's-complement hardware were implemented, although it could be
used for magnitude numbers also, there would no longer be the facility for detecting overflow.

Sign-and-magnitude coding of numerical data would be preferable, were it not for the undue
complexity of the logic required. Figure 10 outlines this logic. Among the advantages are over-
flow detection, ease of interpretation of data by programmers, and desirability for multiplication
and division. These advantages notwithstanding, sign-and-magnitude hardware will not be imple-
mented because of its complexity.

Although two's-complement addition and subtraction are the only arithmetic operations which
have been implemented in hardware in this computer, any operation in any number system can be
programmed. Two's-complement arithmetic will be most frequently used of course. Later in
this section, programs to add, subtract, multiply, and divide in sign-and-magnitude and in floating-
point will be discussed.

Floating- Point

The two fixed-point numbers which make up a floating-point number are called the fraction
and the characteristic, denoted by F and C respectively. A numerical quantity A is expressed in
this system as

A = F x 2',

where C is chosen such that

Equation 2 insures the minimum possible percentage error. When condition 2 is satisfied, the
quantity A is said to be expressed in normalized floating-point form.

Examination of the fractions in Table 9 quickly shows that it is difficult to determine whether
or not condition 2 is satisfied for two's-complement fractions when the sign is negative. Further-
more, it is necessary to keep track of overflows, which a r e not e r ro r s in this case. The occur-
rence of an overflow during adding simply means that the resulting fraction, F, is greater than 1.
To remedy this condition, F is shifted right one place, and 1 is added to the characteristic, C . It
is not obvious, therefore, which number system should be used to express the fraction F.

In order to have sufficiently high precision that repeated calculations can be made without in-
troducing unacceptable error, an entire 12-bit word will be used for the fractional part of a
floating-point number. Putting the fraction and characteristic in separate words has the additional

20

I

advantage that no coding is needed to unpack them for the separate handling they require. Since
there a r e 11 significant bits in the fraction, the maximum possible e r ror is k2-I2. The minimum
value for a normalized fraction is 2- ' (condition 2), so the maximum relative error is

In other words the precision is rt.05 percent, which should be sufficient for spaceborne applications.

The characteristic also contains a sign and 11 significant bits. It will be in two's-complement
form because this is most efficient to program. The greatest number which can be expressed in
the 2-word floating-point format is

Likewise, the least number which can be expressed is

G . N . 4 10614

and

Using the relationship ENTRY

SHIFT 1) UNTIL

loglo (x) = log, , (2) * log2 (x) % . 3 log2 (XI , (6) CHAR (A) =CHAR (e)

we see that

(7 1 v v

(WHOLE WORD) (WHOLE WORD) (WHOLE WORD) (WHOLE WORD)
C = A + B C = A + B C = A - B C = B - A

These numbers a re unimaginably large and
small respectively. Indeed the dynamic range
is so large that tests for floating-point overflow
and underflow need not be made because the
possibility is so remote.

Figures 11, 12, and 13 are flow charts of
the programming required to perform floating-
point addition in the sign-and-magnitude, two's-
complement, and one's-complement systems. It

SiGN (C) = + SIGN (C) = + SIGN (C) = - f
17 BOXES

Figure 1 1-Floating-point add, sign-and-magnitude.

21

SHAFT UNTIL , i+o-- , ,
0 C = A + B

- ++
C = A + B

C = O - C SIGN (C) = - 1
I I

w
SHIFT LEFT SHIFT LEFT

UNTIL M S B = 1

c = o - c 7
Figure 12-Floating-point add, two’s-complement.

C = A + B C =A+B
(WHOLE WORD)

SIGN (C)=-

I

18 BOXES

Figure 13-Floating-point add, one’s-complement.

is evident that there is very little difference in the difficulty involved. Sign-and-magnitude is the
most natural system to use because normalization is easiest; however, the addition of the two
fractions is difficult. Using two’s-complement notation, addition of the fractions is easy, but the
result must be converted to sign-and-magnitude for normalization and extra coding is required to
keep track of overflow. One’s-complement requires extra coding both to keep track of overflows
and to add 1 to the result when necessary. Since there is so little difference in the complexity of
the programs required for these three systems, sign-and-magnitude will be used for the fraction.

Arithmetic Subroutines

A package of arithmetic subroutines (software) has been written to provide those operations
which were not included in the hardware. Table 10 gives a summary of information about these
subroutines.

Entry points a r e listed for two’s-complement add and subtract subroutines which use the same
argument cells that the other subroutines use. These subroutines a re included in this discussion
only as a basis against which the more involved subroutines may be compared. Because two’s-
complement add and subtract are implemented in hardware it is more efficient to use open sub-
routines for these functions.

22

Number
System

ADD
SUB
MULT
DIV

Two’s
:ample-
ment

Oper-
ation

Sign
and

Mag-
nitude

ADD
SUB
MULT
DIV

mtry
Point

TWCA
TWCS
TWCM
TWCD

FXPA
FXPS
FXPM
FXPD

FLPA
FLPS
F L P M
F L P D

ARGl
ARGl
ARGl
ARG1-ARG2

ARG1-ARG3
ARG1-ARG3
ARG1-ARG3
ARG1-ARG3

Table 1 0

Ari thmetic Subroutines.

Argument Cel l s

ARGB
ARGB
ARGB
ARG5

ARG2-ARG4
ARG2-ARG4
ARG2-ARG4
ARG2-ARG4

I

Float-
ing

Point

ARGl
ARGl
ARGl
ARGl

ADD
SUB
MULT
DIV

ARGB
ARGB
ARG2
ARG2

I

C

ARGB
ARG2
ARGB
ARGB

ARC2
ARGB
ARG1-ARG2
ARG1-ARG2

ARG2-ARG4
ARG2-ARG4
ARGB-ARG4
ARG2-ARG4

~

~

Return
Cel l

TWCR
TWCR
TWCR
TWCR

~

FXPR
FXPR
FXPR
FXPR

F L P R
F L P R
F L P R
F L P R

Error
Cond.

-
-
-

I by 0

O’flow
O’flow

O’flow
-

Error
Resul t

modulo 211

-
signs,
f by 1

Symbol
Pref ix

Y
Y
U
V

z
z
W
X

Each of the operations has three arguments (A, B, and C). We shall adopt the following conven-
tion in regard to these arguments; C = A + B, C = A - B, or C = A/B, as appropriate. Several
cells have been reserved in the data memory for arithmetic subroutine arguments. Table 10 shows
how they have been assigned. For most of the fixed-point operations, ARGl and ARG2 a r e used for
the operands A and B and the result C is left in ARG2, ready to be used as an operand in further
computation. Floating-point operations require two-word operands. ARG1-ARG3 and ARG2-ARG4
hold the fraction and characteristic of A and B respectively. The result C is left in ARG2-ARG4,
ready for further computation.

The only unusual operations as far as argument assignment is concerned a r e sign-and-magnitude
multiply and divide. Multiplication operates on two single-precision words to produce a double-
precision product, and division acts on a double-precision dividend to produce a single precision
quotient and a single precision remainder as shown in the table. The quotient is left in ARG2 and
the remainder in ARGl to minimize data shuffling preceding the next operation.

Three cells have been reserved in the data memory for arithmetic subroutine return addresses.
They are TWCR for two’s- complement subroutines, FXPR for sign-and- magnitude subroutines, and
FLPR for floating-point subroutines. For a normal return, the arithmetic subroutines transfer
control to the location specified by the appropriate return cell. Error conditions a r e also listed in
Table 10 along with their affect on the arguments.

The last column of Table 10 lists symbol prefixes for the arithmetic subroutines. By giving
each subroutine a unique prefix, they may all be assembled together without danger of multiply de-
fined symbols.

23

,,,, ,-.---

The calling sequences for all of the arithmetic subroutines are similar. First, the argu-
ments and the return address are stored in the proper cells of the data memory. Then control
is transferred to the desired entry point. For example, to add two sign-and-magnitude numbers
stored in NUMl and NUMB and place the result in ANSR, the following coding would be used:

LOAD
x,x
STO
LOAD
x,x
STO
MIN
TRA
STO
TRA

TRA

x,x
STO

*

RTRN LOAD

NUMl

ARGl
NUMB

ARG2

RTRN
FXPR
FXPA

EROR
ARG2

ANSR

ARGl = NUMl

ARG2 = NUMB
GET RETURN ADDRESS

STORE RETURN ADDRESS
TRANSFER TO ADD SUBROUTINES

ERROR RETURN
NORMAL RETURN

SAVE ANSWER

An instruction must be specified for the e r ror return location. If overflows a r e to be ignored,
the TRA EROR at the e r r o r return location can be replaced by NOP. The instruction must not be
deleted, however, because if it were, an overflow would result in recalling the subroutine. A large
number of recalls could be made before a normal return occurred. This would waste much t. n e
and the result would no longer be modulo 2 ll. This particular arrangement for e r ror returns has
been chosen to minimize the number of .machine cycles required for the normal returns.

Now that the arithmetic subroutine package has been introduced, the remaining subsection..
will describe and analyze the programs in detail.

Programming Techniques

Assembly Language

The computer will be programmed in assembly language. It could be programmed directly
in machine code, but e r rors would be easy to make and hard to detect and correct. Compiler-
type languages a re not practical because the most efficient programs possible must be produced.
A s yet, no compiler can outperform the expert human programmer when tight coding is required.
It is expected that an assembler for the language to be described will be written to run on a ground
based computer. However, this is not necessary. The programs can be assembled by a human
programmer if required. Even if the programs are assembled by hand, assembly language coding
is preferable to direct machine language coding.

24

A detailed specification of the language is not necessary at this point. The only requirement
is that reasonable notation be adopted in order that programs may be written and analyzed, but not
necessarily assembled. For the present discussion, any feature of the language not specifically
explained will be assumed to operate like 7090 FAP. The following fields will be used:

LOCATION OPERATION COUNT/ADDRESS/OCTAL COMMENT

The Location and Comment fields need no explanation. A blank Count/Address/Octal field will be
assumed to contain 12 if a count is required and zero i f an address o r octal number is required.

The form of the Operation field varies depending on the type of instruction. Arithmetic and
Test instructions have the form:

Operation Code Mnemonic, Test Code Mnemonic.

Shift and 1/0 instructions have the form:

SW1 Mnemonic, SW2 Mnemonic, Output Mnemonic.

A Pulse instruction consists of the operation code and a 2-character octal number which specifies
the 6-bits which control the pulse output lines.

Instructions which modify the instruction register consist only of a mnemonic operation code.
Transfer, Load, and Store consist of the mnemonic operation code and a symbolic o r decimal
address.

Arithmetic Subroutines

The arithmetic subroutine package was written to serve two purposes. The first is purely
functional; to provide the operations it performs. The second was to gain experience programming
the computer and insight into its capabilities. Therefore, each subroutine in the package will now
be individually described, explained, and analyzed.

Sign-and-Magnitude Add and Subtract

The flow chart which has been developed for sign-and-magnitude addition and subtraction is
shown in Figure 14. It is the most efficient of several methods which were experimented with.
Subtraction is accomplished by an alternate entry point which changes the sign of the second
argument before proceeding. One question which had to be answered was whether o r not the sign
should be separated from the magnitude before computation was done. As it turns out, operating
on the whole word (sign included) is most efficient.

When both signs are plus (represented by zeroes), the entire words a r e simply added as shown
in the left hand path of the flow chart (Figure 14). Since the sign bits add to zero, any overflow
(a car ry propagated past the most significant bit) will appear as a 1, or minus sign. Therefore,

25

CYCLES

LOAD ARG2 SUBTRACT ENTRY 2
x. x 13

FXPS

OFF, ROT 11 12
COMP 1 CHANGE SIGN (B) 2
STO ARGZ 2

FXPA LOAD ARGl ADD ENTRY 2
x. x 13

1 , B1 0 TEST SIGN (A) (7) (-) TRA YAM 1
+ LOAD ARGZ 2

13 x. x
, B1 0 TEST SIGN (B) 1

B TO DR2, A TO DRl

TRA Y PM 1
ADD, B1 +, COMPUTE SUM 13
TRA YOVP OVERFLOW PLUS 1
TRA YXlT DONE 1

YPP

Y PM
YMP

x, x 13
SUB, B1 +- or -+ 13

x, x +, MAKE- 13
ZERO 13
SUB c = o - c ; 13
STO ARG2 SAVE C 2
TRA YXlT DONE 1

TRA YCHS -, MAKE+ 1
YPP YPM YMP YMM *,el

(WHOLE WORD) (WHOLE WORD) (WHOLE WORD) (WHOLE WORD)

YAM LOAD
x, x
I B1
TRA
TRA

*
YMM ADD, B1

YCHS OFF, ROT
TRA

COMP
STO
TRA

*
YOVP OFF, ROT

COMP
YOVM STO

MIN

ARG2

0
YMM
YMP

2
13

1
1
1

TEST SIGN (B)

+

--, COMP. SUM
OVERFLOW MINUS

CHANGE SIGN
SAVE C
DONE

13
1

12
YOVM
11
1
ARG2
YXlT

2
2
1 '- YOVM I

(A) RETURN

11
1
ARG2

12
2
2

13

CHANGE SIGN
SAVE C
GET - 1

OVERFLOW

OCT 7777 - 1 1
LOAD FXPR 2

13 ADD
MIX OVERFLOW RETURN 13

FXPRzFXPR- 1 Figure 14-Sign-and-magnitude add and subtract.

YXlT LOAD FXPR 2
x, x 13
MIX NORMAL RETURN 13

Figure 15-Program listing for sign-and-magnitude

add and subtract.

if the sign of the result is plus, the answer is correct; and, i f the sign if minus, there has been an
overflow. If the answer is correct, the program executes a normal return; otherwise, the sign is
set plus giving the result modulo 211 and an overflow return is executed.

When both signs are minus (represented by ones), the entire words are also added as shown in
the right hand path of the flow chart. Again the sign bits add to zero and any overflow will appear
as a 1, or minus sign. If the sign of the result is plus, the sign is set minus (two negative num-
bers were added) and a normal return occurs. If the sign of the result is minus, an overflow oc-
curred and an overflow return is executed.

On the other hand, if the signs of the two arguments are different, a subtraction is performed
as shown in the two center paths of Figure 14. Again the entire words are used. The word with
the negative sign is subtracted fromthe word with the positive sign. The magnitude of the result
must be less than the greater of the argument magnitudes; therefore, the answer cannot overflow.
The sign of the answer is found by testing the sign of the result of the subtraction. Since the sub-
tract operation can be viewed as first taking the two's-complement and adding, we see that again
the two sign bits will combine to produce a zero, or plus sign. Therefore, if the result of the sub-
traction has a minus sign, the equivalent two's-complement addition overflowed into the sign posi-
tion. This means that the answer is positive. But, if the result of the subtraction has a plus sign,
then the equivalent two's-complement addition did not overflow and the answer is negative, and in
two's-complement form. In this case the answer is converted to sign-and-magnitude form by
subtracting it from zero. This is equivalent to adding the two's-complement of the answer to zero.

The coding required to implement the flow chart (Figure 14) is shown in Figure 15. To aid
the reader in correlating the flow chart and the program listing, many of the symbolic addresses
have been included on the flow chart. The first part of the program tests the signs of the argu-
ments. This part is straight-forward except for one thing. When the second argument is loaded
from the memory, it enters Data Register 1. The subsequent exchange instruction leaves ARGl
in Data Register 1 and ARG2 in Data Register 2, therefore, it is not necessary to reload either
argument after testing the signs.

Additional instructions are saved by testing the sign of the result of addition or subtraction
with the add or subtract instruction itself. The computer was intentionally designed to make this
possible. This can be observed in the add instruction at location YPP.

Further reduction in the number of instructions required is obtained by using the same coding
to do either C = A - B or C = B - A. It has already been pointed out that at the end of the sign
tests, both arguments are still in the data registers (A in Data Register 1 and B in Data Register
2). Thus, all is ready for subtracting A from B. To subtract B from A, it is only necessary to
first exchange the contents of the two data registers with the single instruction at location YPM.

Another example will show the sor t of savings which careful programming can produce. Con-
sider the two boxes in the lower right-hand corner of the flow chart which set the sign of the answer.
The most obvious way to code these is:

27

I -

PL
CYCLES

x,x 13
MIN GET MASK 13
OCT 3777 + MASK 1
AND SET SIGN + 13
TRA GO 1

*
MI x,x 13

MIN GET MASK 13
OCT 4000 - MASK 1
OR SET SIGN - 13

Go

This method requires 9 locations in the program memory. It also requires 4 or 5 memory ac-
cesses and 40 or 41 machine cycles per execution. A much better approach is

CYCLES
PL (or MI) OFF, ROT 11 12

COMP 1 2

This simplification is possible because careful scrutiny of the flow chart shows it is only neces-
sa ry to change the sign, rather than setting it. The improved method uses 2 program memory
locations instead of 9. Only two memory accesses are required instead of 4 or 5. It uses only
14 machine cycles instead of 40. The counting of machine cycles is discussed later in this section.

Overflow return is accomplished as follows:

OWL MIN GET -1
OCT 7777 -1
LOAD FXPR GET RETURN ADDRESS
ADD SUBTRACT 1
MIX TRA TO C(FXPR)- 1.

Addition of -1 is used instead of subtraction of +1 to save instructions and machine cycles. The
constant (+1 or -1) must be stored in the program memory; therefore, it enters Data Register 2.
To subtract +1, it would have to be moved from Data Register 2 to Data Register 1, an unneces-
sa ry step. Normal return is very simple. The coding used is:

LOAD FXPR GET RETURN ADDRESS
x,x
MIX TRA C(FXPR)

28

a

Floating-Point Add and SubCvact

Figure 16 is a flow chart of the floating-point add and subtract subroutine. Subtraction is
accomplished by changing the sign of the second argument and then adding. To add two floating-
point numbers, they must first be adjusted so that their characteristics are the same.
example:

For

.io111 x 25, .io111 x 2 5

+ . iooiox 23 + . O O ~ O O X 25

. i i o i i x 2 5 .
FLPS

J

Figure 16-Floating-point add and subtract.

29

As shown, this adjustment consists of taking the difference (D) of the characteristics and shifting
the fraction associated with the smaller characteristic right D places. If D is greater than N - 1,
where N is the number of binary places in the fractions, the fraction being shifted is shifted out
of existence and becomes all zeros.

After the characteristics and fractions have been properly adjusted, the fractions are added
by the sign-and-magnitude subroutine. Three sor ts of results are possible; overflow, a normal
fraction, and a non-normal fraction. The worst possible overflow condition is:

.11111
+ .11111

1.11110

To remedy this, the result is shifted to the right one place and 1 is added to the characteristic.
If, fortuitously, a normal fraction results from the addition, no further action i s needed. When
the argument fractions have different signs, it is possible to get a non-normal result (.OOlOl x 2-3
for example). Then it is necessary to shift the fraction to the left until the left most bit is a 1 and
decrease the characteristic by the number of shifts. The example above would become .101OOX 2-'
by this process. If perchance the resulting fraction is zero, the characteristic should also be set
to zero to produce the conventional "normal zero."

The coding for floating-point addition and subtraction appears in Figure 17. Several portions
of this coding are of interest. Starting at FLPA the constant +10 is transferred from the program
memory to the data memory. It happens that in this case it is more efficient to do this than to
read the constant out of the program memory when it is needed. Then, 8 instructions after FLPA,
advantage can be taken of one of the unique characteristics of the computer. Normally one would
store the result of one computation before reading more data out of storage. The program origi-
nally read:

STO ZD SAVE D
LOAD ZTEN GET +10 CONSTANT.

Since the STO uses the contents of Data Register 2 and LOAD only affects Data Register 1, these
two instructions may be interchanged:

LOAD ZTEN GET +10 CONSTANT
STO ZD SAVE D

Then the same location in the data memory can be used for both +10 and D, whereas before two
locations were needed. Saving memory locations is important because the memory is so small.

The floating-point add and subtract subroutine requires the fractional magnitude to be shifted
D places (where D is a variable). Therefore, we find in this program an interesting example of
instruction modification. Starting 5 instructions past location ZLTM the following sequence
occurs:

30

FLPS

FLPA

t

*
ZXlT

*

*

ZADD

ZRET

zov

LOAD
x, x
,ROT
COMP
STO

MIN
OCT
STO

LOAD

LOAD
SUB, B1

TRA
LOAD
STO
SUB, B1
TRA
LOAD
x, x
STO
LOAD
x. x
STO

LOAD

MIX

x, x

x, x

MIN
X, ROT
LOAD
OR

LOAD
MIX

LOAD

STO

x. x

x, x

MIN
TRA
STO
TRA

IRA
LOAD
ZERO
ROT, X
.Z
TRA
STO
STO
TRA

LOAD
x. x
ZERO

MIN
OCT
OR
STO

x. x

ARGZ

11
1
ARG2

0012
ZTEN

ARGB

ARG4

ZMD
ZTEN
ZD

ZLTP
ARGJ

ARG4
ARG 1

ARGZ

FLPR

SUBTRACT ENTRY

CHANGE SIGN

ADD ENTRY
+ 10 CONSTANT

CHAR (A)

CHAR (B)
D = CHAR (A) -

CHAR (B)
D IS -
D IS+

SAVE D
IS D LESS THAN 10

YES
NO, C = A

RETURN

GET X, ROT 0
0
ZD

FORM X, ROT D

Z l

11
ARG2
1
ARGP

ZRET
F W R
FXPA

zov
ARGP
1
11
0
ZNRM
ARG2
ARG4
ZXlT

ARGZ
11
1
13

2000

ARGZ

GET MAG (B)
EXECUTE X, ROT D
MAG (B) TO DR2
GET SIGN (e)
INSERT SIGN
SAVE SHIFTED B

CALL FXPA

OVERFLOW RETURN
GET C

STRIP OFF SIGN
IS MAG (C) = O

NO
YES

c = 0

OVERFLOW RETURN
RENORMALIZE

CYCLES

2
13
12
2
2

13
1
2

2
13
2

13

1
2
2

13
1
2

13
2
2

13
2

2
13
13

CYCLES

13
1
2

13

2
13kD

12
2
2
2

13
1
2
1

1
2
2

12
1
1
2
2
1

2
12
2

14
13
1

13
2

ZMD

t

ZLTM

ZLTP

*

*
ZNRM

"
ZNML

*
ZD
ZTEN
Z T

x, x
ZERO
SUB
LOAD
STO
SUB, B1
TRA
TRA

LOAD
x, x
STO
x. x
STO

MIN
X, ROT
LOAD
OR

LOAD
MIX
x, x
LOAD
x. x
STO
TRA

LOAD

STO
LOAD

x, x

x, x

x, x
STO

STO

MIN
OCT
LOAD
ADD

STO
TRA

,B1
TRA
STO
LOAD
MIN
OCT
ADD

STO
LOAD
ZERO
ROT, X
TRA

LOAD
ROT, OFF
ROT, X
STO
TRA

EQU
EQU
EQU

ZTEN
ZD

ZLTM
ZXIT

ARG 1
11

ZT

ARG 1

0
ZD

ZT

11
ARG 1
1
ARG 1
ZADD

ARGB

ARG4
ARGZ
11

ZT

ARG2

OOO1
ARG4

ARG4
ZXlT

0
ZNML
ZT
ARG4

7777

ARG4
ZT
1
11
ZNRM

ARG2
11
1
ARG2
ZXlT

TS (1
TS (2
ARGJ

CYCLES

MOVE D 13
13

D = O - D 13
GET + 10 2
SAVE D 2
IS D LESS THAN 10 13

YES 1
NO, C = B 1

SIGN (A) + M A G (A) 2
STRIP SIGN (A)

FROM MAG (A) 12
SAVE MAG (A) 2

13
SAVE SIGN (A) 2

GET X, ROT 0 13
1
2

FORM X, ROT D 13

GET MAG (A) 2

MAG (A) TO DR2 12
GET SIGN (A) 2

2 INSERT SIGN
SAVE SHIFTED A 2

1

EXECUTE X, ROT D 13+ D

CHAR (A) 2
13

CHAR (C)=CHAR (A) 2
SIGN (B)+MAG (B) 2
STRIP SIGN (B)

FROM MAG I B)
SAVE MAG (8) ' '

SAVE SIGN (B)

CHAR (C) =
CHAR (C) + 1

IS IT NORMAL
YES
NO

GET CHAR (C)
GET - 1
- 1
CHAR (C) =

SAVE CHAR (C)
GET MAG (C)

SHIFT LEFT 1
LOOP

CHAR (C) - 1

GET SIGN (C)

INSERT SIGN
SAVE C
DONE

12
2

13
2

CYCLES

13
1
2

13
2
1

1
1
2
2

13
1

13
2
2
2

12
1

2
12
2
2
1

Figure 17-Program listing for floating-point add and subtract.

31

MIN GET X,ROT 0 INST.
X, ROT 0
LOAD ZD GET D
OR FORM X,ROT D
LOAD ZT GET FRACTION
MIX SHIFT RIGHT D PLACES.

The first 4 instructions are used to produce the instruction X,ROT D in Data Register 2. Then
the fraction is loaded into Data Register 1. The MIX instruction causes the contents of Data Reg-
is ter 2 to be shifted into the instruction register and executed. Data Register 2 is filled with
zeros during the shifting. Therefore execution of the contents of Data Register 2 (X,ROT D) has
the desired effect of shifting the fraction to the right D places and inserting zeros in the vacated
bit positions.

The count field is interpreted modulo 16; therefore, if D were to exceed 16, an incorrect num-
ber of shifts would occur. For that reason the number of shifts (D) is tested before instruction
modification. If it is greater than 10, one of the arguments is zero (to the precision of the ma-
chine). The flow chart shows that in this case the other argument is taken for the answer.

After returning from the sign-and- magnitude subroutine without an overflow, the magnitude
of the result is tested to see i f it is zero. Not only is this required to produce a normal zero, but
the subsequent normalizing loop would "hang up" if the magnitude were zero. This would occur
because a 1 would never appear in the most significant bit of the fraction, no matter how many left
shifts were made.

Sign-and-Magnitude Multiply

The sign-and- magnitude multiplication subroutine is used by both the floating-point and the
two's-complement subroutines. Logically this program is quite simple since it operates in the
conventional shift-and-add manner. It takes two arguments, each with a sign and an 11-bit mag-
nitude, and produces a double precision product with a sign and a 22-bit magnitude. The sign and
the most significant eleven bits are left in ARGl. The sign and the least significant 11 bits are
left in ARG2. When integers or mixed numbers are multiplied, the programmer must take care
to keep track of where, in these two words, the significant bits and the binary point will occur.
Several examples using 4-bit words will show the problems. Table 11 contains 6 examples of mul-
tiplication. In example l, two integers are multiplied and the entire result is in the least signifi-
cant portion of the two-word answer. Again, in example 2, two integers are multiplied, but this
time both of the answer words contain significant bits. In example 3 a mixed number has been
used. Both answer words contain significant bits and the binary point location is different from
the previous examples.

The easiest cases occur when the two arguments are normal fractions. Then ARGl will always
contain the significant part of the result and the answer will be a normal fraction, o r will require
at most one left shift to make it normal (examples 4, 5, and 6). This is discussed further in the
section on floating-point multiplication.

32

Table 11

Multiplication Examples.

Example

1

2

3

4

5

6

Multiplicand
(ARG1)

+3
0011

+6
0110

+3-1/2
011.1

+1/2

+1/2

+7/8

0.100

0.100

0.111

Multiplier
(ARG2)

Product
(ARGl/ARG2)

-2
X 1010

+3
X 0011

+4
X 0100

+1/2
X 0 .loo

+3/4

+7/8

X 0.110

X 0.111

-0 23

+2 x 23

1000 - -

0010

+3 x 22
0011

+1/4
0.010

- -

- -

- -

+3/8
0.011 - -

+3/4
0.110 - -

-6
i 1110

+2
+ 0010

+2
+ 010.0

0 x 2-6
+ 0000

0 x 2-6
+ 0000

1 x 2-6
f 0001

The flow chart for this program appears in Figure 18. Figure 19 shows how the multiplier,
multiplicand, sign, and partial product are handled during multiplication. When the sign of the
product is computed, it appears in the sign position of the multiplier. A s the program was origi-
nally coded, this new sign was stripped off and stored temporarily until the multiplication was
complete. It happens, however, that the sign can be left with the multiplier throughout the multi-
plication operation. This saves several instruction locations and one word in the data memory.

In step 1 of Figure 19 we see the state of the computer at the beginning of the multiplication
process. This corresponds to location UGO in Figure 20. The multiplicand is stored in ARGl
preceded by a plus sign, Data Register 2 contains zero, and Data Register 1 contains the sign of the
product and the multiplier. Then, in step 2, the two data registers are rotated to the right as shown.
The least significant bit of the multiplier enters Data Register 2, where it may be tested. If this
bit (denoted by M in the figure) is a 0, step 2 is repeated. Otherwise the sign and multiplier are
temporarily stored, M is set to 0, and the multiplicand is brought into Data Register 1 and added
to the contents of Data Register 2 to form the partial product (step 3). Then step 2 is repeated,
shifting one bit of the partial product into Data Register 1. After all eleven bits of the multiplier
have been tested, the data registers contain the product and sign as shown in step 4.

The following instructions adjust the words so that the signs a r e at the proper location in each
and then store the results:

CYCLES

x,x
STO

1 SIGN TO DR2
ARGl SAVE MS PRODUCT

2
2

33

ARG 1

0 I MULTIPLICAND

0 --- 0 S MULTIPLIER 1

M O --- 0

COMPUTE A N D SAVE
SET M U L T I P Z N D S IGN +

PARTIAL PRODUCT = 0
co== 11

I ROTATE TO NEXT BIT
OF MULTIPLIER

ULP
ARG 1

101 MULTIPLICAND I

1 UADD

I ADD I I MULTIPLICAND I DR 1

MULTIPLICAND - ,
I

ADD DR2

PARTIAL PRODUCT

3
COUNT - 1

I I

INSERT S IGN L'
DR2

MS PRODUCT

4

1
DR 1

LS PRODUCT 0 S e 3 RETURN

Figure 18-Sign-and-magnitude multiply. Figure 19-Multiplication.

CYCLES

2
13
2

12
2
2

12
2
2

13
1
2

13
1

2
2

13
2
2
1
1
2

13
2

2
2

CYCLES
12
1
1

2
13
2
2
2
2

12
2
2

2
13
13

13
2

12
2
2

13
2
1

x. x 11
,z 0
TRA ULP

LOAD ARGZ
x, x
LOAD ARGl
ROT.ROT 11

GET B (MULTIPLIER)

GET A (MULTIPLICAND)
PASS ALL BUT SIGN
COMPUTE PRODUCT SIGN
SAVE B AND NEW SIGN

SET A +
SAVE A

FXPM

*

ULP

UGO

*
UADX

34

TEST COUNT
NOT DONE

UADD

*
UPP
UCNT

EOR'
STO
x. x
ZERO
STO

MI N
OCT
STO
ZERO
TRA

STO
LOAD
x, x
LOAD
x, x
, B1
TRA
STO
x, x
STO

LOAD
ZERO

1
ARG 2
11
1
ARG 1

7776
UCNT

UGO

UCNT
UPP

ARG 2
1
0
UADD
UPP

ARG 2

UCNT
1

LOAD UPP GET MS PROD

GET LS PROD
SIGN TO MS
SAVE MS PROD

LS ?ROD TO SIGN
SIGN TO BIT 1
SAVE LS PROD

x, x

x, x 1
LOAD ARG2

STO ARG 1
ROT,OFF 1
x. x 11
OFF,ROT 1
STO ARG 2

COUNT = 11
MS PARTIAL PROD=O

LOAD FXPR
x. x
MIX RETURN

GET MS PARTIAL PROD

GET LS PARTIAL PROD
LONG RIGHT ROTATE 1
TEST MULTIPLIER BIT

1, ADD
0, DON'T ADD

SAVE PARTIAL PRODUCTS

x, x
STO ARG 2
x, x 11
ZERO 1
LOAD ARGl
ADD
STO UPP
TRA UADX

SAVE LS PARTIAL PROD

BIT 1 MS PP=O
MULTIPLICAND

SAVE MS PARTIAL PROD

EQU T S (1
EQU TS(2 COUNT = COUNT - 1

Figure 20-Program listing for sign-and-magnitude multiply.

CYCLES
ROT, OFF 1 SHIFT OUT 0 2
x,x 11 11 BITS FOLLOW SIGN 12
OFF, ROT 1 SIGN TO BIT 1 2

2
22
- STO ARG2 SAVE LS PRODUCT

Here again is an example of how careful coding can save execution time. This sequence of instruc-
tions was originally coded

CYCLES
x,x 1 SIGN TO DR2 2
OFF,ROT 11 SIGN TO BIT 12 12
X, ROT 1 SIGN TO LS PRODUCT 2
STO ARGl SAVE MS PRODUCT 2
x,x 13
STO ARG2 SAVE LS PRODUCT 2

33
-

Each of these sequences contain 6 instructions and each performs the same operation; however,
the first sequence requires only 22 machine cycles while the second requires 33.

Another important improvement was made in the coding with a large resulting saving in exe-
cution time. The coding in question begins at location UADX (Figure 20). It performs the opera-
tions COUNT = COUNT - 1 and tests COUNT for zero. The obvious method of accomplishing
this function requires 30 machine cycles:

CYCLES
UADX MIN 13

OCT 7777 -1 1
LOAD UNCT GET COUNT 2
ADD, Z COUNT = COUNT - 1 13

1 TRA ULP
30
-

Since the maximum count is only 11, the same function can be performed by placing 11 ones
in a word and repeatedly shifting zeros in until the entire word becomes zero. The coding shown
below does the trick and requires only 18 machine cycles, a saving of 12 cycles:

UADX LOAD UNCT GET COUNT
ZERO 1 INSERT 0
x,x 11 SHIFT REST
,z 0 TEST
TRA ULP

CYCLES
2
2

12
1
1

18
-

35

.,..,,. ..-.-.-- I1 I I I Ill I I

This function is performed 11 times for each
multiplication; therefore, a total of 11 x 12 = 132
machine cycles per multiplication a r e saved by
usingthe new coding. Also, notice that a count of 0
has been specifiedfor the TEST instruction Z. Any
count could be specified, but at the expense of
more machine cycles. If no count were specified
it would have been assumed to be 12, and 13
machine cycles would be used instead of 1.

CHAR (C) =
CHAR (A) + CHAR

. 1 . Floating-Point Multiply

CHAR (C) = - l + I CHAR (A) + CHAR (B) I To obtain the product of two floating-point
I

I
'

numbers the characteristics are added and the
fractions multiplied. The logic is shown in Fig-
ure 21. Adding the characteristics is simple
because they a r e in two's-complement form.

Figure 2 1 -Floating-point mu1 tip1 y.

FLPM

WRET

WNML

WCH

MI N
TRA
STO
TRA

LOAD
x, x
LOAD
ROT, X

B1
TRA
OFF, ROT
x, x
STO
MI N
OCT
TRA

x, x
STO
ZERO
LOAD
ADD

WRET
FXPR
FXPR

ARG 2
11
ARG 1
11
0
WNML
11
1
ARG 2

7777
WCH

1
ARG 2

ARG 3

CALL FXPM

LS PRODUCT FRACTION

MS PRODUCT FRACTION
12 SIG BITS I N DR2
TEST NORMALITY

NORMAL
NON- NORMAL

NORMALIZE, INSERT SIGN
SAVE PRODUCT FRACTION
GET - 1

- 1

INSERT SIGN
SAVE PRODUCT FRACTION

CHAR (A)

CYCLES

13
1
2
1

2
12
2

12
1
1

12
2
2

13
1
1

2
2

13
2

13
LOAD ARG4 CHAR(8) 2

STO ARG4 SAVE CHAR(C) 2
ADD CHAR (C) = CHAR (A) +CHAR (E) 13

LOAD FLPR 2
x, x 13
MIX RETURN 13

Multiplying the fractions is done by the sign-
and- magnitude multiplication subroutine. The
only problem which arises is the possibility of
a non-normal fraction in the product. It was
shown in Table 11 (Example 5) that if the re-
sulting fraction is non-normal, one left shift is
sufficient to restore normality. The character-
istic of the product is then adjusted by subtract-
ing one. Figure 22 contains the coding for
floating-point multiplication. It will not be dis-
cussed because it is straight-forward and there
are no tricks involved.

Two's- Complement Multiply

The easiest way to multiply two two's-
complement numbers is to first convert them
to sign-and-magnitude form, and then use the
sign-and- magnitude multiplication subroutine.
The product is subsequently converted back into
two's-complement form. Since two's-complement
notation will normally be used for fairly small
integers, it is assumed that only the least sig-
nificant half of the double-precision product
contains significant data. No test is made to -

Figure 22-Program listing for floating-point multiply. see if this condition is violated, just as no test

36

I

is made to detect overflow in two's-complement addition. The flow chart for this subroutine may
be found in Figure 23 and the coding in Figure 24.

CYCLES

2 TWCM LOAD
x, x
I 61
TRA
LOAD
x. x

ARG 1

0
S A M
ARGZ

0
SBM

SRET
FXPR
FXPM

13
1
1
2

13
1
1

13
1
2
1

TEST SIGN (A)

+

TEST SIGN (B)

+

SAG

,SI
TRA

SBG MIN
TRA
STO
TRA CALL FXPM

MAGNITUDE
STRET LOAD

x, x
, B I
TRA
LOAD
x, x
MIX

ARG2

0
SCM
TWCR

2
13

1
1
2

13
13

TEST SIGN (C)

+

RETURN

SCG

CONVERT TO
MAGNITUDE S A M x, x

ZERO
SUB I 1

1
ARG 1
SAG

COMPLEMENT
MAG (A)

INSERT SIGN
SAVE A

x, x
STO
TRA

x, x
ZERO
SUB

x, x
STO
TRA

13
13
12 11

1
ARG2
SBG

COMPLEMENT
MAG (6)

INSERT SIGN
SAVE B

2
2
1

S C M x, x
ZERO
SUB

13
13
12

2
2
1

11

1
AGR2
SCG

COMPLEMENT
MAG (C)

x, x
STO
TRA

INSERT SIGN
SAVE C

Figure 23 -Two's-complement multiply. Figure 24-Program listing for two's-complement mu1 tiply.

Sign-and-Magni fu.de Divide

This subroutine does binary division in a manner analogous to decimal long division. A
single-precision divisor is divided into a double-precision dividend, which could very well be the
double-precision result of a previous multiplication. The division subroutine produces a single-
precision quotient and a single-precision remainder as answers. In basic principle, this program
is like other binary division algorithms; however, considerable ingenuity must be applied to ob-
tain an efficient program for this computer.

Figure 25 is the flow chart of the sign-and-magnitude division program. The coding is given
in Figure 26. The program starts by first trying the highest possible power of 2 which could ap-
pear in the quotient, just as the highest power of 10 is tried first in decimal long division. Then
successively lower powers a r e tried until the entire quotient has been developed. In decimal

37

FXPD

INITIALIZE QUOTIENT
STRIP SIGNS FROM I OPERANDS, D =MS (A) - B

NORMAL
RETURN * D=MS (A) - B

0 TO QUOTIENT 1 TOQUOTIENT

1
Figure 25-Sign-and-magnitude divide.

division, one must ascertain whether the mul-
tiplier of a particular power of 10 (a particular
digit of the quotient) is 0, 1, 2, . . . , 8 or 9. In
binary division the problem is much simpler
because the only possibilities a r e 0 and 1. In
decimal division, the divisor is multiplied by
the quotient digit and power of 10 being con-
sidered, and then the resulting product is sub-
tracted from the dividend. Binary division is
easier because the only possible non-zero quo-
tient bit is 1. Therefore, the divisor is simply
multiplied by the power of 2 in question and
subtracted from the dividend. If the subtrac-
tion produces a positive remainder, then a 1 is
inserted in the bit of the quotient which corre-
sponds to the power of 2 in question. Otherwise

VSUB

VLOP

VOD

VPL

VQUO

LOAD
x. x
LOAD
OR
LOAD
EOR
ZERO
OFF, R 0 1
STO
x, x
ZERO
STO

LOAD
MIN
OCT
OR
OFF, ROT
STO

LOAD
x, x
ZERO
S T 0
LOAD

SUB, B1
TRA
MIN
OCT
LOAD
ADD
MIX

LOAD
x , x
LOAD
ROT, ROT
x. x
ROT, ROT
,Z
TRA
x, x
STO
LOAD
x. x
STO

LOAD
x , x
MIX

STO
x , x
STO
LOAD
SUB, c
TRA
LOAD
ZERO
x, x
STO
TRA

STO
LOAD

COMP
OFF, ROT
STO
TRA

x, x

EQU

ARG 1

ARG2

ARGS

11
11
VQUO
11
1
ARGS

ARG2

4000

11
ARG2

ARG 1
11
1
ARG 1
ARGS

VLOP

7777
FXPR

ARGZ

ARG 1
11
1
11
0
VOD
1
ARG 1
VQUO

ARGZ

FXPR

ARG2

ARG 1
ARG5

VPL
VQUO
1
11
VQUO
VLOP

AGR 1
VQUO

1
10
VQUO
VLOP

TS (1)

GET MS (A)

GET LS (A)
OR SIGNS
GET B
COMWTE NEW SIGN
CLEAR ALL BUT SIGN
INITIALIZE AND

SAVE IN QUOTIENT

SIGN (8) =+
SAVE B

GET LS (A)

FLAG
FLAG LS (A),
INITIALIZE,
SAVE

GET MS (A)

SIGN =+
SAVE MS (A)
GET B

D = M S (A) - B
D - , OK
D + , OVFL

- 1

FXPR = FXPR - 1
OVERFLOW RETURN

GET LS (A)

GET MS (A)
LONG LEFT ROTATE 1
I S LS (A)=O

NO
YES

SAVE REMAINDER

SAVE QUOTIENT

NORMAL RETURN

SAVE LS (A)

SAVE MS (A)
GET B
D = M S (A) - B

D +
D -

PUT A O IN QUOT.
LOOP

SAVE NEW MS (A)
PUT A 1 IN QUOT.
.
LOOP

Figure 26-Program listing for sign-and-
magnitude divide.

CYCLES

2
13
2

13
2

13
12
12
2

12
2
2

2
13

1
13
12
2

2
12
2
2
2

13
1

13
1
2

13
13

2
13
2

12
2

12
1
1
2
2
2

13
2

2
13
13

2
13
2
2

13
1
2
2
12
2
1

2
2

13
2

11
2
1

38

e
I

Y - - - - Y B

a 0 is inserted in the quotient, the dividend is restored, and the
this way the quotient is built up, one bit at a time, starting with

next lower power of 2 is tried. In
the most significant bit.

There is a problem which can occur. If the divisor is too small, or the dividend too large, the
quotient will overflow. Therefore, the first subtraction which is made is programmed to corre-
spond to the 11th power of 2. The most significant bit of the quotient corresponds to 2" . If the
result of the first subtraction is positive, an overflow condition obtains. An overflow return is
provided to indicate that this eventuality has occurred.

Once it has been determined that overflow will not occur, the double-precision dividend is
shifted to the left 1 place. This decreases by one the effective power of two by which the divisor
is multiplied. The computer instruction set contains only right shift instructions. Therefore
the coding of a long shift is somewhat more involved than would be desirable. A long left rotate
will suffice, however. It is obtained by using the following three instructions:

ROT , ROT 11
x,x 1
ROT,ROT 11.

Figure 27 shows how these instructions
produce a 1-bit long left rotation. In step 1 we
see the desired operation and, in step 2, the
initial contents of the data registers. The two
bits which change registers during the opera-
tion are denoted A and B. The first instruction
(ROT,ROT, 11) causes bits A and B to be posi-
tioned at the right-hand ends of their respective
registers as shown in step 3. Then X,X 1 ex-
changes these bits between the registers (step
4). Finally the instruction ROT,ROT 11 repo-
sitions the bits A and B at the right-hand ends
of their new registers and the operation is com-
plete (step 5).

Returning again to Figure 25, we see that
after the long left shift, the least significant
part of the dividend is tested. If it is zero, the
division is finished. It is not obvious that this
condition should indicate that the division proc-
ess is over; however, once it has been demon-
strated that this is indeed a valid test, one may
take advantage of it. The loop in the division
program, like that in the multiplication pro-
gram, is traversed 11 times. In the multiplica-
tion program 18 machine cycles per loop were

LONG LEFT ROTATE

DR2 DR 1

INITIAL CONTENTS

2- -1

I 1 1 I

Figure 27-Long left rotate.

39

devoted to keeping track of when to stop. Five instructions were required for this purpose. The
Same technique could be used here, but testing the dividend requires only 2 machine cycles and 2
instructions. A saving of 176 machine cycles and 3 program memory locations is realized.

0

The validity of the dividend test depends on two conditions. First, that the least ,significant
portion of the dividend must be non-zero untilafter the 12th long-left rotation. Second, that the least
significant portion of the dividend must be zero after the 12th long-left rotation. The f i rs t condi-
tion is easy to satisfy. The least significant portion of the dividend consists originally of a sign
and 11 data bits. To fulfill the first condition, the sign is stripped off, the 11 data bits a r e hhifted

1
to the left one place and the 12th bit (at the right-hand end of the word) is made a 1. This 1 will
remain in the word until the 12th shift has taken place.

I DIVISOR

Condition 2 will be satisfied i f each long-left rotation causes a zero to enter the right-hand
end of the least significant part of the quotient. Figure 28 (step 1) shows the divisor and dividend
just before division starts. Before the division loop is entered the most significant part of the
dividend is tested to see that it is smaller than the divisor. If not, the division stops and an
overflow return is made as previously explained. Let us denote the divisor by D and the most
significant part of the dividend by M. We have

DRl [y- 1

ARGS

I

D > M ,

and

D 211

(9)

The next step in the division process is a
1-bit long-left rotation; shown in step 2. The
effect is to multiply M by 2 and possibly to add
1 (if a 1 was shifted in from the least signifi-
cant part of the dividend). The largest possible
contents of Data Register 1 at this step a r e
2M t 1. Because M and D a r e integers (we may
assume the binary point is at the right-hand end
of the words), we know from expression 9 that

D 2 M t l . (11)

ARG5 The ref or e,

(12)
- 1

2D 2 2 M t 2 ,
4 DR2

which can be written
I ~ . .-

Figure 28-Division. 2D > 2 M t 1 .

40

From expression 13, we deduce that when D is subtracted from 2M + 1, which is the next step in
division, the following condition will hold:

D > (2M+1) - D . (14)

Let us call (a + 1) -D the remainder (R) . Then using expression 10 we see that

Expression 15 says that the most significant bit of the remainder must be a zero, as shown in Fig-
ure 28 (step 3). The next long-left rotation will therefore insert another zero into the word con-
taining the least significant part of the dividend.

The above argument is true for each step of the division process, so it can be shown by induc-
tion that zeroes are always shifted into the least significant portion of the dividend at each step.
The only possible difficulty would occur if the result of subtraction of the divisor were negative.
However, in this case, the dividend is restored and another shift is made, again inserting a zero
as desired. It should be noted that if ones instead of zeros were being shifted out of the left-hand
end of the remainder, significant bits would be lost and an incorrect answer would result. There-
fore, it is shown that the register is long enough to be used for division by this method and that
additional stages on the left hand end are not needed. Figure 28 (step 4) shows the condition of the
computer at the end of the division process.

Considerable effort was also expended on this program in order to obtain an efficient method
of handling the restoration of the dividend when a subtraction gave a negative result, and to obtain
an efficient way of building up the quotient as the division progressed. It is most efficacious to
store both the most significant and least significant parts of the dividend after each long-left shift.
Then, as shown in the flow chart, if the subtraction of the divisor produces a positive result, the
new dividend is stored in place of the old. If the subtraction produces a negative result the contents
of the Data Register 2 are discarded instead of being stored, thus effectively restoring the dividend.

The word containing the quotient is initialized as shown in Figure 29 (step 1). The sign is
placed in position 11 and all the other bits a r e zero. To insert a 1 in the quotient the five instruc-
tions used are:

LOAD SQUO GET QUOTIENT
x,x
COMP 1 INSERT 1
,ROT 10 POSITION QUOTIENT
STO SQUO SAVE QUOTIENT

They operate as follows: After the quotient has been moved to Data Register 2, a 1 is inserted
with the instruction COMP 1 as shown in Figure 29 (step 2). Then the quotient is positioned to be
ready for the next insertion by a 10-place rotation.

41

AS INITIALIZED

l o - - - 01s 101

1 0 - - - o s

0 - - - 0 S I O

To insert a zero in the quotient, four in-
structions are required:

0 _-_ o s 0

LOAD SQUO GET QUOTIENT
ZERO 1 INSERT 0
x,x 11 TRANSFER PREVIOUS QUoT
STO SQUO SAVE QUOTIENT

0 0 . .

The ZERO 1 instruction provides a zero and
X,X 11 moves the rest of the quotient into Data
Register 2 as shown in Figure 29 (step 3).
These particular instruction sequences were
chosen because they minimize the number of
machine cycles needed for execution. They are

. . .
0 IS 10 101 contains a secondary entry point, VSUB. The 0 __- 0

Floating- Point Divide

Floating-point division is accomplished by subtracting the characteristic of the divisor from
the characteristic of the dividend and dividing the fractional part of the divisor into the fractional
part of the dividend. Division of the fractions is performed by the sign-and-magnitude division
subroutine. Floating-point division is similar to floating-point multiplication in that, if re-
normalization of the fractions is necessary, one shift is the most ever needed.

The divisions for 4-bit normal fractions which produce the largest and the smallest possible
quotients are:

1.1110
.1000A~1111-0000 ,

and
.loo1

. 111 1- d l O O O ^ 0000

The quotient will be normal unless the division overflows. The flow chart (Figure 30) shows that
if an overflow return is made from the sign-and-magnitude division subroutine, the entire double
precision dividend is shifted right one place, the characteristic of the quotient is increased by 1,
and division of the fraction is re-initiated. The second time, the division subroutine will make
a normal return.

42

CYCLES

2
13

1
1

13
1
2

13
13

FLPD LOAD ARG 2

0 TEST FOR DIV. BY 0
XGO OK

MIN
OCT
LOAD
ADD
MIX

XGO STO
ZERO
STO

LOAD

DIVISOR 0
7777 - 1
FLPR

FLPR = FLPR - 1
ABNORMAL RETURN

ARG 5 = ARG 2
ARG 2 = 0

CHAR (C)=CHAR(A)- CHAR(B)

ARGS ARGS = ARGZ

ARG2 ARGZ=O

2
13
2

ARG 3

ARG 4

ARG4

CHAR (A) 2

CHAR (6) 2

CHAP (C) 2

13

CHAR(C)=CHAR(A) -CHAR(B) 13

x, x
LOAD
SUB
STO DIVIDE

MIN
TRA
STO
TRA

CALL FXPD . . 13
1
2
1

1 XRET
FX PR
FXPD

1 XRET
TRA
LOAD
x, x
STO

XABN
ARG 1

ARG 2

FXPD ABN. RET.
NORMAL RETURN

ARG2 = ARG 1

1
2

13
2 CHAR (C) = CHAR (C) + 1

SHIFT ARG 5 RIGHT 1

INITIALIZE QUOTIENT

- YES

ARG 2 = A R G 1

YE!

LOAD
x, x
MIX

FLPR 2
13
13 NORMAL RETURN

XABN LOAD
MIN
OCT
ADD
STO

ARG 4

OOO1

ARG4

2
13

CHAR (C)

1
13
2

CHAR (C) = CHAR (C) + 1
Figure 30-Floating-point divide.

At the beginning of the floating-point di-
vision, a test is made to determine whether o r
not the divisor is zero. If it is, an e r ror re-
turn is made. Besides being mathematically
ill-defined, division by zero would allow a limit-
less number of overflow returns from the sign-
and-magnitude division subroutine. This must
be prevented because valuable data will be lost

*

LOAD
x, x
LOAD
X, OFF
ZERO
STO
MIN
OCT
OR
STO

ARG 1

ARG 2
1
1
ARG 1

OOO1

ARG 2

2
13
2
2
2

SAVE SHIFTED MS (A) 2
13

1
13

SAVE LS (A) 2

LOAD
x, x
LOAD
TRA

ARG 1

ARGS
VSUB

GET MS (A)

GET B
RE - ENTER FXPD

2
13
2
1

if the computer hangs up in an endless loop.
The only other function performed by the

Figure 31 -Program listing for floating-point divide.

floating-point division program is the moving
of data to the correct argument cells before and
after the division of the fractions.

Figure 31 contains the coding for floating-point division. It is all straight-forward except for
the portion which shifts the dividend right, after an overflow return from the sign-and-magnitude
division subroutine. This coding begins 5 instructions past location XABN. A long-right shift of
one place is desired. That is, a 0 is to be shifted into Data Register 2 and the contents of Data
Register 2 and Data Register 1, taken together, a r e to be shifted right one place.

43

First the data registers are loaded. Then, since the computer has no long-right shift instruc-
tion, a bit of trickery is used. The instruction X,OFF 1 shifts the least significant bit of Data
Register 2 into Data Register 1. The trick is that it does this without altering the contents of
Data Register 2 because when the OFF position of SW2 is specified, no strobe pulses are sent to
Data Register 2. Then the instruction ZERO 1 shifts a zero into Data Register 2 and completes
the operation. After the least significant bit of the least significant part of the dividend is set to
1 (for the end-of-division-detection scheme), the sign-and-magnitude division subroutine is re-
entered at VSUB.

YES

SIGN (A)

CONVERT TO
MAGNITUDE

(+) c = -
I

SIGN (C)

CONVERT TO
TWO'S COMP

(3 RETURN

Figure 32-Two's-comp leme nt divide. I

TWCD

TGO

TBG

TAG

TRET

TCG

TAM

TBM

TCM

LOAD
x, x
.Z
TRA
TRA

, B l
TRA
STO

LOAD
x, x
,B1
TRA
STO

ZERO
STO

MIN
TRA
STO
TRA

LOAD
x. x
, B l
TRA
LOAD
x, x
MIX

x, x
ZERO
SUB

x, x
TRA

x, x
ZERO
SUB

x. x
TRA

x. x
ZERO
SUB

x, x
STO
TRA

ARGZ

0
TGO
TCG

0
TBM
ARG5

ARG 1

0
TAM
ARG2

ARG 1

TRET
FX PR
FXPD

ARGZ

0
TCM
TWCR

1 1

1
TAG

1 1

1
TBG

11

1
ARG2
TCG

CYCLES
GET B 2

13
TEST FOR DIV. BY 0 1

OK
DIVIDED BY 0

TEST SIGN (B)

+

TEST SIGN (A)

+

ARGl = 0

CALL FXPD

TEST SIGN (C)

+
RETURN

COMPLEMENT
MAGNITUDE
INSERT SIGN

COMPLEMENT
MAGNITUDE
INSERT SIGN

COMPLEMENT
MAGNITUDE
lNSERT SIGN
SAVE C

1
1

1
1
2

2
13

1
1
2

13
2

13
1
2
1

2
13
2
1
2

13
13

13
13

12
2
1

13
13

12
2
1

13
13

12
2
2
1

Figure 33-Program listing for two's-complement divide.

44

I

Two's- Complement Divide

Figure 32 gives the flow chart for two's-complement division. Similar to two's-complement
multiplication, it first converts to sign-and- magnitude form and then uses the sign-and-magnitude
subroutine. After division has taken place, it converts the answer to the two's-complement form.
The program assumes that the arguments a r e integers and produces an integer result. It truncates
rather than rounding off. The coding appears in Figure 33.

Two's-Complement Add and SubCvact

These two operations will usually be performed by open subroutines, which do not require that
both arguments be stored, and then recalled from memory. However, to provide a basis for com-
parison, they a r e coded here as closed subroutines which find the arguments in the usual arithmetic
subroutine argument cells and also leave the results there. Figures 34 and 35 show this coding.

TWCA LOAD ARG 1

LOAD ARG 2
ADD
STO ARG 2

x, x

*

A

B
C = A + B
SAVE C

CYCLES CYCLES

2 TWCS LOAD ARG 1 A 2
x, x 13
LOAD ARG 2 B 2
SUB C=A- B 13
STO ARG 2 SAVE C 2

13
2

13
2

LOAD TWCR 2 * LOAD TWC R 2
x, x 13 x, x 13
MIX RETURN 13 MIX RETURN 13

Figure 34-Program listing for two's-complement add. Figure 35-Program listing for two's-complement subtract.

Analysis o f the Ari thmetic Subroutine Package

Storage Require men ts

Table 12 shows the number of program memory locations required for each of the arithmetic
subroutines. Together they would occupy 427 locations, or nearly half of the program memory.
There are almost 600 locations remaining, however. Also, it was pointed out in the previous sec-
tion that the program memory could be readily expanded to 2048 locations if the data memory was
reduced in size. This would leave 1600 locations for spacecraft data-handling programs. Without
writing these programs, one cannot know for certain how many locations they will require. How-
ever, experience with the arithmetic subroutines, which are fairly complex, shows that one should
be able to do a significant amount of data processing or compression with programs which will f i t
in the available memory.

The arithmetic subroutine package may be tailored for specific application by leaving out un-
used subroutines. For instance, if the data compression programs are designed to not require
division, then 158 more memory locations are free for use. Eliminating the floating-point sub-
routines produces an even greater saving. The floating-point subroutines themselves occupy 190
locations. Furthermore, without floating-point operations, the fixed-point addition and subtraction

45

Table 12

Stor age Re quire ments .
Subroutine

TWCA/TWCS
FXPA/FXPS
FLPA/FLPS
TWCM
FXPM
FLPM
TWCD
FXPD
FLPD

Program Memory
Locations

-
46
11 2
37
47
27
42
65
51

Total 427 I

subroutine is not required. The total saving is
236 locations. If all operations a r e done in two's-
complement form, only 191 locations a r e re-
quired for the arithmetic subroutines.

Execution Time

In order to estimate the execution times of
the various subroutines, some assumptions will
be made. A reasonable clock rate, for Series
5 1 intergrated circuits, is 200 kc. Therefore,
it will be assumed that the basic machine cycle
is 5ps. This is also a reasonable access time
for a spacecraft memory. The number of
machine cycles, of 5ps each, required

for the execution of an instruction will be the sum of the number of memory accesses and
the number of shifts.

All instructions except LOAD and STO make only 1 memory access. That access loads the
instruction into the instruction register. LOAD and STO make two memory accesses, one to the
program memory and one to the data memory. The number of machine cycles required for each
instruction has been listed in the right-most column of each program listing. When the programs
were coded, attention was given to minimize their execution times.

Each of the arithmetic subroutines was analyzed to determine the maximum and minimum ex-
ecution times. The results of this analysis may be found in Table 13. Two's-complement addition
and subtraction, and sign-and- magnitude addition and subtraction have modest execution times.

Subroutine

TWCA
TWCS
FXPA
FXPS
FLPA
FLPS
TWCM
FXPM
FLPM
TWCD
FXPD
FLPD

Minimum
Machine Cycles

60
60
74
105
199
230
857
764
888
45
217
59

Table 13

Execution Times.

Minimum
Time (ms)

.3
-3
.4
.5
1.0
1.2
4.3
3.8
4.4
.2
1.1
.3

Maximum
Machine Cycles

60
60
129
160
9 04
935
1330
1105
1242
1729
1489
1801

Maximum
Time (ms)

.. .

.3

.3

.6

.8
4.5
4.7
6.6
5.5
6.2
8.6
7.4
9.0

46

Floating-point addition and subtraction is about 2 to 10 times slower than sign-and-magnitude ad-
dition and subtraction because, not only must the fractions be added, but the characteristics must
be handled too. Some time is also spent in the subroutine linkage to the sign-and-magnitude pro-
gram, which is called by the floating-point program. The worse case occurs when the fractions
need extensive renormalization after the addition is performed. As many as 10 trips through the
normalizing loop can be required.

Multiplication i s a lengthy process because
the shift-and-add loop is traversed 11 times.
Division is even slower because its main loop,
which is also traversed 11 times, contains the
instructions to produce a long-left shift. The
difficulty of programming this operation was
discussed earlier in this section. The division
subroutines have short minimum execution
times because the error conditions a r e detected
early in the programs.

A Sample Computational Program

A sample program has been written to gain
some knowledge of the computational power of
the computer. This program computes the sum
of the squares of a set of floating-point num-
bers. The program is written in subroutine
form. The location of the numbers to be
squared and the number of terms to be com-
puted a re specified in the calling sequence by
the calling program. This makes the subroutine
quite flexible.

The flow chart of the subroutine is shown
in Figure 36, Table 14 gives storage require-
ments, and the coding appears as Figure 37.
Because there a re no index registers or hard-
ware address modification features, the pro-
gram must compute the address of each num-
ber which is to be squared. To do this, the
program adds the base address of the data
(supplied by the calling program) to the cur-
rent value of the index. The resulting value is
OR’ed to a LOAD instruction which is thenused
to fetch the data. The program starts with the

SQUAR

7

OF CHAR A(I)

GET CHAR A (I)

COMPUTE ADDRESS
OF FRACT A(1)

GET FRACT A (I) e COMPUTE A(

SQMR

Figure 36-Computation o f x c i i 2 .

i = l

47

Table 14

Storage Requirements for SQUAR.

Data Memory

Location

SQQF

SQQC

SQT

SQAC

SQAF

SQR

Data Stored

Fraction of Accumulated Sum of
Squares

Sum of Squares
Characteristic of Accumulated

N (the number of terms in series)

Base Address of Characteristics

Base Address of Fractions

Return Address

In addition, two tables of N words each are re-
quired to store the fraction and characteristic of
the numbers to be squared and added.

Program Memory

54 Locations Required I
highest index value (N) and works backwards
through the data until the first number A , has
been used. The base address which the calling
program must specify is the address of thelo-
cation immediately preceding the first word of
the data table. The program requires 54 loca-
tions in the program memory.

Exclusive of the time spent in the floating-
point subroutines, the program requires 321
machine cycles for each number to be squared
and added to the sum. Counting the time in the
floating-point subroutines, a total of 2467 cy-
cles is required. Of this time, 87 percent is
spent in floating-point multiplication and addi-

SQUAR LOAD

SQLP

I SQMR

SQAD

x,x .
TRA

STO
LOAD
ADD
x, x
MI N
LOAD
OR
MIX
x, x
STO
STO

LOAD
x, x
LOAD
ADD
x, x
MIN
LOAD
3 R
MIX
x, x
STO
STO

MI N
TRA
STO
TRA

LOAD
x, x
STO
LOAD
x. x
STO

MI N
TRA
STO
TRA

LOAD
x, x
STO
LOAD
x, x
STO

LOAD
MIN
OCT
ADD, Z
TRA
LOAD
x, x
MIX

SQT

SQL-1

SQT
SQAC

ARG 3
ARG 4

SQT

SQAF

ARG 1
ARG 2

SQMR
FLPR
FLPM

SQQC

ARG 3
SQQF

ARG 1

SQAD
FLPR
F LPA

ARG 2

SQQF
ARG4

SQQC

SQT

7777

SQLP
SQ R

GET N (I MAX)

COMPUTE ADDRESS OF A(1) CHAR.

MODIFY LOAD WITH ADDRESS OF
A(1) CHAR.

GET CHAR. OF A(1)

CHAR A(1) FOR MULT. . .
GET I

COMPUTE ADDRESS OF A(I) FRACT.

MODIFY LOAD WITH ADDRESS OF
A(1) FRACT.

GET FRACT OF A(1)

FRACT A (I) FOR MULT

CALL FL. PT. MULT.
GET CHAR OF PARTIAL SUM

GET FRACT. OF PARTIAL SUM

CALL FL. PT. ADD
.

SAVE PARTIAL SUM FRACT

SAVE PARTIAL SUM CHAR,

GET I

I=I- 1, RESULT ZERO?
NO, GO ON
YES, DONE

RETURN

Figure 37-Program listing for computation of t ai’.
i = l

CYCLES

2
13

1

2
2

13
13
13
1

13
14
13
2
2

2
13
2

13
13
13

1
13
14
13
2
2

13
1
2
1

2
13
2
2

13
2

13
1
2
1

2
13
2
2

13
2

2
13
1

13
1
2

13
13

N
m

tion and only 13 percent in the calling sequences to the floating-point subroutines, computation
of data addresses, data fetching and storing, etc. To execute 2467 machine cycles requires about
12.3 ms. Therefore, if N numbers are to be squared and added, the time required (in milliseconds)
will be 12.3 X N. It would take 1.2 seconds to square and sum a set of 100 numbers.

This example shows that computational programs which use the floating-point subroutines are
more likely to be limited by running time rather than program storage requirements. The

48

programmer should use fixed-point arithmetic where ever practical. In this case, the use of fixed-
point arithmetic would reduce multiplication to 1105 cycles, addition to 129 cycles, and would re-
duce the time in the computational program to around 70 cycles. These total 1204 cycles, some-
what less than half that required when floating-point is used.

CONCLUSION

An extremely simple computer has been designed for use on-board spacecraft. Compared to
the usual computer it has a small memory, few registers, few instructions, and short words. Pro-
gramming, therefore, is difficult and great emphasis needs to be put on writing efficient programs.
A package of arithmetic subroutines was written for the computer in order to gain insight into the
actual capabilities of this computer. The only arithmetic instructions implemented in hardware
are two's-complement add and two's-complement subtract. Addition, subtraction, multiplication,
and division were programmed for both sign-and-magnitude and floating-point formats.

The execution times of the arithmetic subroutines appear to be quite large. Particularly those
of the floating-point subroutines and all of the multiplication and division subroutines. These
items shouldbe put inperspective, however. The transmitteddataratefor the AIMP spacecraft is about
25 bits per second. If all the data were to flow through the computer, it would only have to supply
the telemetry system with a word twice a second, or once every 500 ms. The longest arithmetic
operation is floating-point division (in the worst case it takes 9 ms). This operation could be per-
formed 50 times during the inter-word interval.

The storage requirements for the arithmetic subroutines a r e quite large. These programs
take almost half of the 1024 available locations. However, there is enough room left in the pro-
gram memory that there should still be enough room for other useful programs. The arithmetic
subroutine package uses 10 data locations, an insignificant portion of the data memory. If the
512 word data memory were to be used as a buffer, it would require over 1000 seconds for the
telemetry system to empty it. That is almost 17 minut s of continuous data. 2

Unfortunately there has not been time to continue the research into programming this machine
to cover input/output programming. Nor has synchronization of the computer and a telemetry
system through the use of the interrupt, trap, and pulse provisions been investigated. It is doubtful
that these programs will be any more difficult than, for instance, the sign-and-magnitude division
subroutine.

The usefulness of a simple computer, such as the one which is the subject of this research,
depends in large measure on the programming efforts applied. To obtain the sign-and-magnitude
addition subroutine, for instance, required investigation of five different approaches and more than
30 hours of'labor. To code and optimize a program such as the sign-and-magnitude division re-
quires slightly more time.

49

Clearly, there is yet a large amount of work to be done in investigating the application of small
simple computers. This research has shown, however, that a computer such as was designed is
promising enough to warrant further investigation.

(Manuscript received May 31, 1966)

50

Appendix A

Mnemonic Operation Codes

Format A: Single Operation Codes

Mnemonic ~-

TRA
MIN
MIX

Unconditional Transfer
Next instruction word to DR2
Execute contents of DR2

Format B: Single Operation Code wi th Operand Field

Mnemonic

LOAD

STO

PUH*

PUG*

Operation

Operation

Load Contents of Specified Ad-

Store Contents of DR2 at Specified

Pulse Specified Output Lines and

Pulse Specified Output Lines and

dress into DR1

Address

Halt

Go On

Note: * Denotes Optional Instructions. In an absolute-minimum computer they would be
deleted.

Format C: A , B Count [Arithmetic and Test)

A Mnemonic

NOP*
ADD
SUB
OR*
AND*
COMP*
EOR*
ZERO*

Operation

No Operation
Add
Subtract
Logical Or
Logical And
Logical Complement
Logical Exclusive Or
Set Contents of DR2 to zero

51

Note: * Denotes optional instructions. In an absolute-minimum computer all of these in-
structions would be deleted and either NAND or NOR would be added.

B Mnemonic

Blank*
C
Z*
B1
I1
I2
I3 *
I4 *

&eration

No Test
Test carry flip-flop for zero
Test contents of DR2 for zero
Test bit 1 of DR2 for zero
Test interrupt line 1
Test interrupt line 2
Test interrupt line 3
Test interrupt line 4

Note: * Denotes optional instructions. In an absolute-minimum computer all of these instruc-
tions would be deleted. Two interrupt line tests would be retained; one would be used to synchron-
ize data input and one would be used to synchronize data output.

Format D: A , B, C Count (Sh i f t and I/O)

A Mnemonic Operation

OFF (or blank)
DR1
DR2

No strobe pulses to DR1
Connect input of DR1 to output of DR1
Connect input of DR1 to output of DR2

B Mnemonic Operation

OFF (or blank)
DR1
DR2
IN

No strobe pulses to DR2
Connect input of DR2 to output of DR1
Connect input of DR2 to output of DR2
Connect input of DR2 to Input Bus

C Mnemonic Operation

Blank
OUT

No output strobe pulses
Pulse Output Strobe line

52 K).SA- Langley, 1966

“The aeronautical and space activities of the United States shall be
conducted so as to contribzrle . . . t o the expansion of human knowl-
edge of phenomena i n the atmosphere and space. T h e Administration
shall provide f o r the widest practicable and appropriate dissemination
of in formatioii concerning its activities and the results thereof.”

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS:
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES:
of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distri-
bution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in con-
nection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities
and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to
NASA activities but not necessarily reporting the results .of individual
NASA-programmed scientific efforts. Publications include conference
proceedings, monographs, data compilations, handbooks, sourcebooks,
and special bibliographies.

Scientific and technical information considered

Information less broad in scope but nevertheless

Details on the availability o f these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

N AT I 0 N A L AE RO N A UTI CS A N D SPACE A D M I N I ST R AT1 0 N

Washington, D.C. PO546

